目录
32 关系: 基本群,反演,同心 (幾何),同胚,复平面,复流形,中心对称图形,三体问题,开集,圆柱体,儒勒·昂利·庞加莱,几何学,几何中心,几何平均数,勾股定理,积分,直角三角形,相切,面积,複分析,覆疊空間,解析函数,黎曼曲面,轴对称,边界,阿达马三圆定理,若尔当曲线定理,提升,无穷,数学,扇形,拓扑。
- 几何形状
- 初等几何
- 圆
基本群
在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.
查看 环形和基本群
反演
反演是種幾何變換。給定點O、常數k,點P的變換對應點就是在以O開始的射線\overrightarrow上的一點P'使得\overline \cdot \overline.
查看 环形和反演
同心 (幾何)
在幾何學裏,同心的物體的中心或中心軸都在同一位置。圓圈、圓球、圓柱、圓環,都可以是同心的。稱同心的圓圈為同心圓,同心的圓球為同心球,同心的圓柱為同心柱,同心的圓環為同心環。 假設,兩個同心圓的半徑分別為 r_1 與 r_2 ,則兩個同心圓的圓周比是 兩個同心圓的面積比是 假設,兩個同心球或同心環的半徑分別為 r_1 與 r_2 ,則面積比是 容積比是 假設,兩個同心柱的半徑分別為 r_1 與 r_2 ,則面積比與容積比是.
查看 环形和同心 (幾何)
同胚
在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.
查看 环形和同胚
复平面
数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.
查看 环形和复平面
复流形
微分几何中,一个复流形是一个流形,使得每个鄰域在一种连续的方式下看起来象一个複n维空间。更精确的讲,一个复流形有一个坐标图册,其每个坐标图映射到Cn,并且坐标图之间的坐标变换是全纯的。 复流形可以视为微分流形的一种特例。例如,一个1维复流形几何上就是一个曲面,称为黎曼曲面。变换函数必须全纯这个要求意味着和通常的微分流形不同,不同的''C''''k''-微分结构对于不同k没有区别,因为全纯函数解析,一次每个全纯结构也是一个Ck结构,对于任意k ≥1成立。 复流形的理论和实流形的有相当不同的感受,因为複解析函数比光滑函数更为严格。例如,使用惠特尼嵌入定理,每个实流形可以嵌入为Rn的子流形,,但是很少有复流形可以成为Cn的子流形。 Category:复流形 Category:流形上的结构.
查看 环形和复流形
中心对称图形
在数学中,中心对称是几何图形的一种性质。.
查看 环形和中心对称图形
三体问题
三体问题是天体力学中的基本力学模型。.
查看 环形和三体问题
开集
開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).
查看 环形和开集
圆柱体
数学上,圆柱(古稱圓堡壔、圓囷,英語:cylinder)是一个二次曲面,也就是说,一个三维曲面,满足以下直角坐标系中的方程: 这个方程是用于椭圆柱的,是对于普通圆柱(a.
查看 环形和圆柱体
儒勒·昂利·庞加莱
儒勒·昂利·庞加莱(Jules Henri Poincaré,法語发音,又译作彭加勒、昂利·彭加勒,),通常称为昂利·庞加莱,法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是繼高斯之後对于数学及其应用具有全面知识的最后數學家。 他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人並为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。.
查看 环形和儒勒·昂利·庞加莱
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
查看 环形和几何学
几何中心
n 维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。非正式地说,它是X中所有点的平均。如果一個物件質量分佈平均,形心便是重心。 如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。 有限个点总存在几何中心,可以通过计算这些点的每个坐标分量的算术平均值得到。这个中心是空间中一点到这有限个点距离的平方和的惟一最小值点。点集的几何中心在仿射变换下保持不变。.
查看 环形和几何中心
几何平均数
几何平均数(Geometric mean),是求一组数值的平均数的方法中的一种。适用于对比率数据的平均,并主要用于计算数据平均增长(变化)率。 其计算公式为:.
查看 环形和几何平均数
勾股定理
氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.
查看 环形和勾股定理
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 环形和积分
直角三角形
有一个角为直角的三角形称为直角三角形。在直角三角形中,直角相邻的两条边称为直角边。直角所对的边称为斜边。直角三角形直角所对的边也叫作「弦」。若兩條直角邊不一樣長,短的那條邊叫作「勾」,長的那條邊叫作「股」。 直角三角形满足畢氏定理(勾股定理),即两直角边边长的平方和等于斜边长的平方。直角三角形各邊和角之間的關係也是三角學的基礎。 直角三角形的外心是斜边中点;其垂心是直角顶点。 若直角三角形的三邊均為整數,稱為畢氏三角形,其邊長稱為勾股數。 埃及將邊長比例為3:4:5的直角三角形称为埃及三角形。.
查看 环形和直角三角形
相切
若直線與曲線交於兩點,且這兩點無限相近,趨於重合時,該直線就是該曲線在該點的切線。若一條直線垂直於圓的半徑且過圓的半徑的外端,稱這條直線與圓相切。.
查看 环形和相切
面积
面積是一個用作表示一個曲面或平面圖形所佔範圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比。對三維立體圖形而言,圖形的邊界的面積稱為表面積。 計算各基本平面圖形面積及基本立體圖形的表面積公式早已為古希臘及古中國人所熟知。 面積在近代數學中佔相當重要的角色。面積除與幾何學及微積分有關外,亦與線性代數中的行列式有關。在分析學中,平面的面積通常以勒貝格測度(Lebesgue measure)定義。 我們可以利用公理,將面積定義為一個由平面圖形的集合映射至實數的函數。.
查看 环形和面积
複分析
複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.
查看 环形和複分析
覆疊空間
在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.
查看 环形和覆疊空間
解析函数
在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.
查看 环形和解析函数
黎曼曲面
数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.
查看 环形和黎曼曲面
轴对称
#重定向 軸對稱.
查看 环形和轴对称
边界
邊界,亦稱疆界,指用於劃分不同政權所轄區域、領地的地理分界線,進而可標示該區域的範圍。边界与国界不是同义词,例如,深圳与香港之间的界线可称为边界,依法实施边界管理、边防检查、边防禁区等行政措施,但不是国界。.
查看 环形和边界
阿达马三圆定理
在复分析中,阿达马三圆定理是一个关于全纯函数性质的结论。 设 f(z) 是环域 r_1\leq\left| z\right| \leq r_3 上的全纯函数, M(r) 是 |f(z)| 在圆周 |z|.
查看 环形和阿达马三圆定理
若尔当曲线定理
在拓扑学中,若尔当曲线是平面上的非自交环路(又称为简单闭曲线)。若尔当曲线定理说明每一条若尔当曲线都把平面分成一个“内部”区域和一个“外部”区域,且任何从一个区域到另一个区域的道路都必然在某处与环路相交。它由奥斯瓦尔德·维布伦在1905年证明。.
查看 环形和若尔当曲线定理
提升
提升可以指:.
查看 环形和提升
无穷
無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.
查看 环形和无穷
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 环形和数学
扇形
扇形(Circular sector)指圓上被兩條半徑和半徑所截之一段弧所圍成的圖形。因形狀如一把扇子而得名。.
查看 环形和扇形
拓扑
拓扑有以下領域的意義與應用:.
查看 环形和拓扑
另见
几何形状
初等几何
- 三角測量
- 中點
- 中點三角形
- 內角和外角
- 内切球
- 切线
- 到达时间差
- 周长
- 圆心角
- 外接球
- 外森比克不等式
- 大圆
- 對角線
- 平移
- 平行
- 平行公設
- 康威多面體表示法
- 异面直线
- 形狀
- 截面 (幾何)
- 时钟问题
- 樞紐定理
- 欧几里得几何
- 环形
- 球面
- 直径
- 直线
- 线段
- 角平分線定理
- 角直徑
- 轨迹
- 镜像 (几何)
- 镜面反射 (数学)
- 阿波羅尼奧斯圓
- 雙圓錐
- 雙曲線扇形
- 面 (幾何)
- 驴桥定理
- 黄金矩形
圆
- 冰圈
- 半径
- 单位圆
- 单位圆盘
- 圆
- 圆丛
- 圆心角
- 圆的面积
- 圆盘
- 圓周
- 圓周運動
- 圓標
- 圓相
- 大圆
- 天球赤道
- 子午圈
- 广义圆
- 弓形
- 弦 (幾何)
- 弧
- 扁率
- 扇形
- 最小圆覆盖
- 环形
- 直径
- 米尼佛夫人問題
- 莫爾圓
- 阿波羅尼奧斯圓
- 麥田圈