我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

圓周

指数 圓周

圓周是指圓或類似形狀的周長。 圓周和數學上重要的數學常數π有關。若定義圓周為C,半徑為r,直徑為d,圓周長和直徑的比值即為π: π的數值是3.14159 26535 89793...

目录

  1. 11 关系: 半径弧度弧长圓周運動图论等周定理物理常數直径Π

  2. 几何量测量

半径

在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.

查看 圓周和半径

弧度

弧度又稱弳度,是平面角的單位,也是國際單位制導出單位。單位弧度定義為圓弧長度等於半徑時的圓心角。角度以弧度給出時,通常不寫弧度單位,或有時記為rad(㎭)。平面角和立體角皆無因次。 一個完整的圓的弧度是2π,所以2π rad.

查看 圓周和弧度

弧长

曲线的弧长也称曲线的长度,是曲线的特征之一。不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。最早研究的曲线弧长是圆弧的长度。为了计算圆周的长度,数学家发明了用直线段近似的方法,并应用到其他的曲线上。微积分出现后,数学家开始用积分的方式计算曲线的弧长,得出了许多特殊曲线的弧长的精确表达式。.

查看 圓周和弧长

圓周運動

在物理學中,圓周運動是指运动轨迹为圆或圆的一部分的一种运动。 圓周運動的例子有:一個轨道为圆的人造衛星的运动、一个電子垂直地進入一個均勻的磁場时所做的运动等等。.

查看 圓周和圓周運動

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

查看 圓周和圆

图可以指:.

查看 圓周和图

图论

图论(Graph theory)是组合数学的一个分支,和其他数学分支,如群论、矩阵论、拓扑学有着密切关系。图是图论的主要研究对象。图是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。 图论起源于著名的柯尼斯堡七桥问题。该问题于1736年被欧拉解决,因此普遍认为欧拉是图论的创始人。 图论的研究对象相当于一维的单纯复形。.

查看 圓周和图论

等周定理

等周定理,又稱等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理說明在周界长度相等的封闭几何形狀之中,以圓形的面積最大;另一個說法是面積相等的几何形狀之中,以圓形的周界长度最小。這兩種說法是等價的。它可以以不等式表達:若P為封闭曲線的周界长,A為曲線所包圍的區域面積,4 \pi A \le P^2。 虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。等周问题有许多不同的推广,例如在各种曲面而不是平面上的等周问题,以及在高维的空间中给定的“表面”或区域的最大“边界长度”问题等。 在物理中,等周问题和跟所谓的最小作用量原理有關。一个直观的表现就是水珠的形状。在没有外力的情况下(例如失重的太空舱里),水珠的形状是完全对称的球体。这是因为当水珠体积一定时,表面张力会迫使水珠的表面积达到最小值。根据等周定理,最小值是在水珠形状为球状时达到。.

查看 圓周和等周定理

物理常數

物理常數,或称物理定數、物理常量或自然常数,指的是物理学中数值固定不变的物理量。它與数学常数不同,數學常數指的是一个在數值上固定不變的值,但是這個值不一定與物理測量有關。 物理常数有很多,其中比较著名的有真空光速、普朗克常数、万有引力常数、玻尔兹曼常數及阿伏伽德罗常数。它们被假设在宇宙中任何地方和任何时刻都相同。物理常数的物理意义有很多表述形式,普朗克长度表征基本物理长度,真空光速是宇宙中最大的速度,精细结构常数则表征了电子和光子之间的相互作用,是一个无量纲量。 从1937年开始,狄拉克等物理学家开始意识到物理常数有可能随着宇宙年龄的增长而发生变化,但时至今日还没有明确的实验证据能够证明狄拉克提出的这种可能性。但科学家们已经探测到了一些物理量可能每年都依极小的量发生变化,并划定了这种变化幅度可能的上限(万有引力常数变化的量大约是一年10-11;精细结构常数变化的量大约是一年10-5)。 以下是部分物理常數的列表:.

查看 圓周和物理常數

直径

在数学尤其是几何学中,直径是圆形的特性之一,是指穿过圆心且其兩端點皆在圓周上的线段或者該線段的長度是最長的,一般用符号d或著Ø表示。 在一般的度量空间(也就是定义了距离的空间,比如说常见的二维平面)上,也可以定义一个集合的直径。在这里直径是这个集合之中两点之间的距离的最小上界:.

查看 圓周和直径

Π

Pi(大寫Π,小寫π,中文音译:派),是第十六個希臘字母。.

查看 圓周和Π

另见

几何量测量