我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

漸近巨星分支

指数 漸近巨星分支

AGB恆星在天文物理上是非常重要的,因為它們能產生大量的塵粒,並且也是成為行星狀星雲的前兆。 漸近巨星分支是赫羅圖上低質量至中質量恆星在演化時聚集的區域。在恆星演化周期中,這是所有中低質量恆星(0.6-10太陽質量)末期階段的生活。 在觀測上,一顆漸近巨星分支(AGB)恆星看起來像是一顆紅巨星。它的內部構造特點是在中央有一個不活躍的碳和氧核心,外面是正在將氦融合成碳(氦燃燒)的氦層,再外面則是將氫融合成氦(氫燃燒)的殼層,還有大量與一般正常恆星類似的物質組成的外殼。.

目录

  1. 31 关系: 原行星雲天文單位宇宙塵上翻化學分子光年光致蛻變光深度碳星米拉米拉變星紅巨星紅群聚絕對溫度熱力學平衡行星状星云赫羅圖長週期變星S-過程恆星演化核聚变氦閃水平分支温度星周包層施普林格科学+商业媒体

  2. 恒星演化

原行星雲

原行星雲或前行星雲(PPN)是在恆星演化的過程中,介於漸近巨星分支晚期(LAGB)和隨後的行星狀星雲(PN)之間,生命週期很短的一種天體。一個原行星雲會發射出強烈的紅外線輻射,因而是一種反射星雲。在中等質量恆星(1-8 M☉)的生命週期中,它是演化階段中倒數第二亮的。.

查看 漸近巨星分支和原行星雲

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

查看 漸近巨星分支和天文單位

宇宙塵

宇宙塵(Cosmic Dust)是由眾多細小粒子組成的一種固態塵埃,自宇宙大爆炸起,便四散在浩瀚宇宙之中。宇宙塵的組成包含矽酸鹽、碳等元素以及水分,部分來自彗星、小行星等星體的崩解而產生。 宇宙塵對一個天體的誕生亦有影響,例如一個星體崩壞後所產生的宇宙塵,在經過漫長的宇宙旅程後,可能與一個正在形成的星體撞上,於是又循環成為了一個新的星體。在太陽系中,木星、土星、天王星、海王星等行星的光環,即是由於在行星初形成時,碎裂的宇宙塵未能融為星球的主體,但卻又無法擺脫行星萬有引力的牽制而產生圍繞著星球的破碎物質。.

查看 漸近巨星分支和宇宙塵

上翻

上翻是指在恆星演化過程中,表面的對流層向下擴張至經歷核融合物質層的一個時期。結果是,核融合的產物混合到恆星大氣層的外層,使這些核素出現在恆星的光譜中。 第一次上翻出現在主序帶的恆星進入紅巨星分支(RGB)。與對流層混合的結果是在外層的大氣中出現氫融合反應的光譜簽名:12C/13C和C/N的比率降低,並且表面的鋰和鈹豐度也會降低。對一顆質量介於4-8太陽質量的恆星,當在核心的氦融合結束的時候,對流層混合了碳氮氧循環的產物,導致第二次的上翻。第二次上翻的結果使得表面對4He和14N的豐度增加,同時12C和16O減少。 第三次上翻出現在大質量恆星進入漸近巨星分支(AGB),和閃光沿著燃燒的氦殼層發生之後。這次的上翻導致氦、碳和S-過程的產物被帶至表面。結果是增加了碳相對於氧的豐度,創造出了碳星。.

查看 漸近巨星分支和上翻

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

查看 漸近巨星分支和化學

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

查看 漸近巨星分支和分子

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

查看 漸近巨星分支和光年

光致蛻變

光致蛻變 是極端高能量的γ射線和原子核的交互作用,並且使原子核進入受激態,立刻衰變成為兩或更多個子核的物理過程。一個簡單的例子是一顆質子或中子有效的被接踵而來的γ射線從原子核中敲出時,而極端的例子則是γ射線導致自發性的核分裂反應。這種過程根本上是與核融合相反的,原本是轻的元素在高溫下結合在一起形成重元素並釋放出能量。光致蛻變是從比鐵輕的元素吸熱(能量吸收)而從比鐵重的元素放熱放出能量。光致蛻變至少在超新星中對一些重元素和富含質子的元素經由p-過程的核合成有所貢獻。.

查看 漸近巨星分支和光致蛻變

光深度

光深度是透明度的測量,在定義上是輻射或光在傳輸路徑上被散射或吸收的比率。為了讓光深度更加形象化,可以想一想霧。在觀測者和物體之間的霧會立刻使得你前方的光深度為零。當物體遠離時,光深度將會增加,直到該物體遠至不能被看見為止。.

查看 漸近巨星分支和光深度

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

查看 漸近巨星分支和碳

碳星

碳星是大氣層內的碳比氧多,類似紅巨星 (偶爾是紅矮星) 的晚期星。這兩種元素在恆星大氣的上層結合,形成一氧化碳,消耗掉大氣中所有的氧,只留下自由的碳原子和其他的碳結合,使得恆星充滿了像"煤灰"的大氣層, 而觀測人員看見的則是醒目的紅色。 在光譜上,這類恆星的特徵非常明顯,因此早在1860年就被安吉洛·西奇在早期的天文分光學上標示出來。在一般的恆星 (像太陽的恆星) ,大氣中的氧含量都比碳多。.

查看 漸近巨星分支和碳星

米拉

#重定向 刍藁增二.

查看 漸近巨星分支和米拉

米拉變星

#重定向 刍藁变星.

查看 漸近巨星分支和米拉變星

紅巨星

红巨星是巨星的一种,是恆星的一種衰變狀態,根据恒星质量的不同,存在期只有数百万年不等。质量通常约为0.5至8个太阳质量,质量更大的称为红超巨星,質量再大的為紅特超巨星。.

查看 漸近巨星分支和紅巨星

紅群聚

紅群聚是恆星在赫羅圖上的一個特點,被認為是在水平分支上相對來說富含金屬的。與主序帶上表面溫度相同的恆星比較,它的亮度是比較高的(或是與相同亮度的恆星比較,它的表面溫度較低),也就是說它在赫羅圖上的位置是在主序帶的右邊和上面。這個時期相當於恆星演化的氦核燃燒階段,而主序帶是氫核燃燒的階段。 理論上,在紅群聚中恆星的絕對發光度完全與組成或年齡無關,因此可以做為天文學上估計我們的銀河系和鄰近星系和星系團距離的標準燭光。.

查看 漸近巨星分支和紅群聚

絕對溫度

#重定向 热力学温标.

查看 漸近巨星分支和絕對溫度

熱力學平衡

热力学平衡,简称热平衡,指一个热力学系统在没有外界影响的条件下,系统各部分的宏观属性(如物质的量、能量、体积等)在长时间内不发生任何变化的状态。 熱平衡是熱力學中的一個基本實驗定律,其重要意義在於它是科學定義溫度概念的基礎,是用溫度計測量溫度的依據。 在熱力學中,溫度、內能、熵是三個基本的狀態函數:.

查看 漸近巨星分支和熱力學平衡

行星状星云

行星狀星雲是恆星演化至老年的紅巨星末期,氣體殼層向外膨脹並被電離,形成擴大中的發射星雲,經常以英文的縮寫"PN"或複數的"PNe"來表示。"行星狀星雲"這個名稱源自1780年代的天文學家威廉·赫歇爾,但並不是個適當的名字,只因為當他通過望遠鏡觀察時,這些天體呈現類似於行星的圓盤狀,但又是霧濛濛的雲氣。因此,他結合"行星"與"星雲",創造了這個新名詞。赫歇爾的命名雖然不適當,但仍被普遍的採用,並未被替換。相較於恆星長達數十億年歲月的一生,行星狀星雲只能存在數萬年,只是很短暫的現象。 大多數行星狀星雲形成的機制被認為是這樣:在恆星結束生命的末期,也就是紅巨星的階段,恆星外層的氣體殼被強勁的恆星風吹送進太空。紅巨星在大部分的氣體被驅散後,來自高溫的行星狀星雲核心(PNN,planetary nebula nucleus)輻射的紫外線會將被驅散的恆星外層氣體電離。吸收紫外線的高能氣體殼層圍繞著中央的恆星發出朦朧的螢光,使其成為一個色彩鮮豔的行星狀星雲。 行星狀星雲在銀河系演化的化學上扮演關鍵性的角色,將恆星創造的元素擴散成為銀河系星際物質中的元素。在遙遠的星系內也觀察到行星狀星雲,收集它們的資訊有助於了解化學元素的豐度。 近年來,哈伯太空望遠鏡的影像顯示許多行星狀星雲有著極其複雜和各種各樣的形狀。大約只有五分之一呈現球形,而且其中大多數都不是球對稱。產生各種各樣形狀的功能和機制仍都不十分清楚,但是中央的聯星、恆星風和磁場都可能發揮作用。.

查看 漸近巨星分支和行星状星云

赫羅圖

赫羅圖(英语:Hertzsprung–Russell diagram,简写为H–R diagram或HR diagram或HRD)是丹麥天文學家赫茨普龙及由美國天文學家罗素分別于1911年和1913年各自獨立提出的。後來的研究發現,這張圖是研究恆星演化的重要工具,因此把這樣一張圖以當時兩位天文學家的名字來命名,稱為赫羅圖。赫羅圖是恒星的光譜類型與光度之關係圖,赫羅圖的縱軸是光度或絕對星等,而橫軸則是光譜類型或恒星的表面溫度,从左向右遞減。恒星的光譜型通常可大致分為O.B.A.F.G.K.M七种,有一個簡單的英文口訣便于记诵这七种类型,即"Oh Be A Fine Girl(Guy).

查看 漸近巨星分支和赫羅圖

長週期變星

長週期變星 (LPV) 是一種低溫巨大的脈動變星,變光週期從幾天到一千天或更長,有時缺乏明確的定義,並且有些是不規則的。長週期變星的光譜類型從F到redwards,但是多數都是紅巨星和AGB巨星,也就是光譜類型為M、S或C。它們的顏色通常是深橙色或紅色。 長週期變星可以分成下列幾種有明確定義的類型,但是常見到的都緊緊題到米拉變星。.

查看 漸近巨星分支和長週期變星

S-過程

S-過程,或稱為慢中子捕獲過程,是發生在相對來說中子密度較低和溫度中等條件下的恆星進行核合成過程。在這樣的條件下,原子的核心進行中子捕獲的速率相較之下就低於β負衰變。穩定的同位素捕獲中子;但是放射性同位素在另一次中子捕獲前就先衰變成為穩定的子核,這樣經由β穩定的過程,使同位素沿著同位素列表的槽線移動。S-過程大約創造了另一半比鐵重的元素,因此在星系化學演化中扮演著很重要的角色。S-過程與更快速的r-過程中子捕獲不同的是它的低速率。.

查看 漸近巨星分支和S-過程

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C.

查看 漸近巨星分支和恆星演化

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

查看 漸近巨星分支和核聚变

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

查看 漸近巨星分支和氢

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

查看 漸近巨星分支和氦

氦閃

氦閃是0.8太陽質量()至2.0的低質量恆星核心,在紅巨星階段非常短暫的熱失控核融合,有大量的氦經由3氦過程成為碳(預測太陽在離開主序帶12億年後會經歷)。許多罕見的失控氦融合過程也可以在白矮星吸積的表面上進行。由於這些低質量恆星在核心的氫耗盡時,還無法進行氦融合反應來對抗重力,最終會因為氦是以量子力學的簡併狀態壓力在核心支援與對抗重力,而不是以熱壓力阻擋引力坍縮。這種氦在核心累積到一定的比例,便會進行很激烈的氦融合(燃燒)。這一擠壓的過程導致核心的溫度和密度增加,最後當核心的溫度達到1億K时,會以驚人的速率擴大與反抗重力,並使溫度下降(在主序帶階段因為有太多的氫,所以不會發生)。但簡併物質的基本特質是溫度變化不會影響體積,因此也不受流體靜力平衡的通過融合率的規則限制,非常高的密度加快了融合速率,導致失控的核反應,在持續幾分內釋放出相當於整個銀河的能量。這純粹是以天文物理的模型來描述,因為正常的低質量恆星,能量會被外層的大氣層吸收而未能發現與觀察到。這個過程結束時,物質被加熱到熱壓力再度成為主導,因此物質會膨脹和冷卻。據估計,核心的質量大約40%是電子簡併氦,和6%的核心轉換成碳。.

查看 漸近巨星分支和氦閃

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

查看 漸近巨星分支和氧

水平分支

' 水平分支(HB)是質量與太陽相似的恆星緊接在後面的一個恆星演化階段。水平分支恆星的能量是通過在核心的氦融合(三氦反應)和圍繞著核心的一圈氣體的氫融合(碳氮氧循環)。在恆星核心的氦融合開始之際,進入紅巨星分支前端的恆星結構產生巨大的變化,導致整體光度的減少,恆星外殼的收縮使表面達到更高的溫度。.

查看 漸近巨星分支和水平分支

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

查看 漸近巨星分支和温度

星周包層

星周包層是恆星的一部分,具有大致球形的形狀,但不會受到重力吸引到恆星的核心。通場星周包層形成於稠密的恆星風或出現在恆星形成之前。老年恆星的星周包層最終將會演變成原行星雲,而初期恆星體的星周包塵會發展成為星周盤。.

查看 漸近巨星分支和星周包層

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

查看 漸近巨星分支和施普林格科学+商业媒体

另见

恒星演化