我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

光致蛻變和漸近巨星分支

快捷方式: 差异相似杰卡德相似系数参考

光致蛻變和漸近巨星分支之间的区别

光致蛻變 vs. 漸近巨星分支

光致蛻變 是極端高能量的γ射線和原子核的交互作用,並且使原子核進入受激態,立刻衰變成為兩或更多個子核的物理過程。一個簡單的例子是一顆質子或中子有效的被接踵而來的γ射線從原子核中敲出時,而極端的例子則是γ射線導致自發性的核分裂反應。這種過程根本上是與核融合相反的,原本是轻的元素在高溫下結合在一起形成重元素並釋放出能量。光致蛻變是從比鐵輕的元素吸熱(能量吸收)而從比鐵重的元素放熱放出能量。光致蛻變至少在超新星中對一些重元素和富含質子的元素經由p-過程的核合成有所貢獻。. AGB恆星在天文物理上是非常重要的,因為它們能產生大量的塵粒,並且也是成為行星狀星雲的前兆。 漸近巨星分支是赫羅圖上低質量至中質量恆星在演化時聚集的區域。在恆星演化周期中,這是所有中低質量恆星(0.6-10太陽質量)末期階段的生活。 在觀測上,一顆漸近巨星分支(AGB)恆星看起來像是一顆紅巨星。它的內部構造特點是在中央有一個不活躍的碳和氧核心,外面是正在將氦融合成碳(氦燃燒)的氦層,再外面則是將氫融合成氦(氫燃燒)的殼層,還有大量與一般正常恆星類似的物質組成的外殼。.

之间光致蛻變和漸近巨星分支相似

光致蛻變和漸近巨星分支有1共同点(的联盟百科): 核聚变

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

光致蛻變和核聚变 · 核聚变和漸近巨星分支 · 查看更多 »

上面的列表回答下列问题

光致蛻變和漸近巨星分支之间的比较

光致蛻變有12个关系,而漸近巨星分支有31个。由于它们的共同之处1,杰卡德指数为2.33% = 1 / (12 + 31)。

参考

本文介绍光致蛻變和漸近巨星分支之间的关系。要访问该信息提取每篇文章,请访问: