我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

波數

指数 波數

在物理學裏,波數是波動的一種性質,定義為每  長度的波長數量(卽每單位長度的波長數量乘以 )。更明確地說,波數是每  長度內,波動重複的次數(一個波動取同樣相位的次數)。波數與波長成反比。用方程的語言說, 其中,\lambda\,\! 是波長。 角频率是單位時間內的角度變化,而波數為單位長度內的角度變化,因此波數即是空間上的角频率。波數對應向量爲波向量。 有時候,波數也會定義為每單位長度的波長的數目。但這樣定義比較不好使用。 從隨著時間而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個頻率譜;而從隨著位置而變的函數萃取出的一組數據,經過傅里葉變換,會得到一個波數譜。 採用國際單位制,波數的單位是m^\,\!。.

目录

  1. 27 关系: 动能动量厘米-克-秒制光速国际单位制真空焦耳物理学物質波相位相速度频谱角频率质量能级赫兹量子力学量纲里德伯常量電磁輻射氫原子波包波矢波粒二象性波长普朗克常数

  2. 波动力学
  3. 純量 (物理學)
  4. 頻率單位

动能

动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.

查看 波數和动能

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

查看 波數和动量

厘米-克-秒制

厘米-克-秒單位制或厘米-克-秒系統(英文:centimetre-gram-second system,故常簡稱CGS制)是一種物理單位的系統制度,分別以厘米、克及秒為長度、質量及時間的基本單位。 在力學單位方面厘米-克-秒單位制是一致的,但在電學單位方面則有幾種變體。此單位系統後來被MKS--取代,也就是米-千克-秒系統(meter-kilogram-second system),而其又被國際單位制(SI system)所取代;國際單位制具有MKS制的三個基本單位,再加上凱氏溫標、安培、燭光及莫耳,有許多工程及科學領域只使用國際單位制,不過仍有一些領域常使用厘米-克-秒單位制。 在量測純力學系統時(即只和長度、質量、力、壓力、能量等物理量有關的系統),厘米-克-秒制和國際單位制之間的轉換相當單純及明確。單位間的轉換係數均為10的次幂,均可由以下關係推導而成;100 cm.

查看 波數和厘米-克-秒制

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

查看 波數和光速

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

查看 波數和国际单位制

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

查看 波數和真空

焦耳

耳(簡稱焦)是國際單位制中能量、功或热量的導出單位,符号為J。在古典力學裏,1焦耳等於施加1牛頓作用力經過1公尺距離所需的能量(或做的機械功)。在電磁學裏,1焦耳等於將1安培電流通過1歐姆電阻1秒時間所需的能量。焦耳是因紀念物理學家詹姆斯·焦耳而命名。 以其它單位表示, 1焦耳也可以定義.

查看 波數和焦耳

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

查看 波數和物理学

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

查看 波數和物質波

相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

查看 波數和相位

相速度

波的相速度或相位速度(phase velocity),或簡稱相速,是指波的相位在空間中傳遞的速度,換句話說,波的任一頻率成分所具有的相位即以此速度傳遞。可以挑選波的任一特定相位來觀察(例如波峰),則此處會以相速度前行。相速度可藉由波的頻率f與波長λ,或者是角頻率ω與波數(wave number)k的關係式表示: 注意到波的相速度不必然與波的群速度相同,相速是波包中某一单频波的相位移动速度;群速度代表的是「振幅變化」(或說波包)的傳遞速度,表示一段波包的包络面上具有某特性(如幅值最大或最小)的点的传播速度。 群速和相速只有是混合波(非单频波)在频散介质中传播时才有差别。 電磁輻射的相速度可能在一些特定情況下(例如:出現異常色散的情形)超過真空中光速,但這不表示任何超光速的--或者是能量移轉。物理學家阿諾·索末菲與里昂·布里於因(Léon Brillouin)對此皆有理論性描述。 參閱色散以對波的各種速度有更完整的了解。.

查看 波數和相速度

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

查看 波數和频谱

角频率

在物理学(特别是力学和电子工程)中,角频率ω有时也叫做角速率、角速度标量,是对旋转快慢的度量,它是角速度向量\vec的模。角频率的国际单位是弧度每秒。由于弧度是无量纲的,所以角频率的量纲为T −1。 因为旋转一周的弧度是2π,所以.

查看 波數和角频率

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

查看 波數和质量

能级

能级(Energy level)理论是一种解释原子核外电子运动轨道的一种理论。它认为电子只能在特定的、分立的轨道上运动,各个轨道上的电子具有分立的能量,这些能量值即为能级。电子可以在不同的轨道间发生跃迁,电子吸收能量可以从低能级跃迁到高能级或者从高能级跃迁到低能级从而辐射出光子。氢原子的能级可以由它的光谱显示出来。.

查看 波數和能级

赫兹

赫兹(符号:Hz)是频率的国际单位制单位,表示内周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名的,常用于描述正弦波、乐音、无线电通讯以及计算机时钟频率等。.

查看 波數和赫兹

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 波數和量子力学

量纲

--(Fundamental unit),是表示一个物理量由基本量组成的情况。确定若干个基本量后,每个导出量都可以表示为基本量的幂的乘积的形式。引入量纲这一概念可以进行量纲分析,这既是物理学的基础,又有着很多重要应用。.

查看 波數和量纲

里德伯常量

里德伯常量是物理学中经常用到的常數。根据2014年CODATA的结果,它的值是 里德伯常量起初是在为表示氢原子谱线的里德伯公式中引入的,里德伯公式 其中R即为里德伯常量。 1913年丹麦物理学家尼尔斯·波尔创立的波尔模型给出了里德伯常量的表达式: 其中: 然而应用波尔模型计算出里德伯常量的数值: 而实验值 二者差值超过万分之五。英国光谱学家福勒(A.Fowler)提出了这一质疑。1914年波尔提出,这是由于假设原子核静止不动引起的。实际情况是,原子核的质量不是无穷大,它与电子围绕共同的质心转动。波尔对其理论进行了修正,用原子核和电子的折合质量μ代替了电子质量: 不同原子的里德伯常量RA不同。令 其中: 而一种原子的里德伯常量 其中M是原子核的质量。 下面给出了几个不同元素的原子里德伯常量的数值: 1H:109 677.58 cm-1 2D:109 707.42 cm-1 3T:109 717.35 cm-1 4He+:109 722.27 cm-1 7Li2+:109 728.80 cm-1 8Be3+:109 730.70 cm-1.

查看 波數和里德伯常量

電磁輻射

#重定向 电磁辐射.

查看 波數和電磁輻射

氫原子

氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。.

查看 波數和氫原子

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

查看 波數和波

波包

在任意時刻,波包(wave packet)是局限在空間的某有限範圍區域內的波動,在其它區域的部分非常微小,可以被忽略。波包整體隨著時間流易移動於空間。波包可以分解為一組不同頻率、波數、相位、波幅的正弦波,也可以從同樣一組正弦波構成;在任意時刻,這些正弦波只會在空間的某有限範圍區域相長干涉,在其它區域會相消干涉。 描繪波包輪廓的曲線稱為包絡線。依據不同的演化方程,在傳播的時候,波包的包絡線(描繪波包輪廓的曲線)可能會保持不變(沒有色散),或者包絡線會改變(有色散)。 在量子力學裏,波包可以用來代表粒子,表示粒子的機率波;也就是說,表現於位置空間,波包在某時間、位置的波幅平方,就是找到粒子在那時間、位置的機率密度;在任意區域內,波包所囊括面積的絕對值平方,就是找到粒子處於那區域的機率。粒子的波包越狹窄,則粒子位置的不確定性越小,而動量的不確定性越大;反之亦然。這位置的不確定性和動量的不確定性,兩者之間無可避免的關係,是不確定性原理的一個標準案例。 描述粒子的波包滿足薛定諤方程,是薛定諤方程的數學解。通過含時薛定諤方程,可以預測粒子隨著時間演化的量子行為。這與在經典力學裏的哈密頓表述很類似。.

查看 波數和波包

波矢

波向量是波的向量表示方法。波向量是一个向量,其大小表示波数(k.

查看 波數和波矢

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

查看 波數和波粒二象性

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

查看 波數和波长

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

查看 波數和普朗克常数

另见

波动力学

純量 (物理學)

頻率單位

亦称为 角波数。