我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

波函数坍缩

指数 波函数坍缩

波函數坍縮指的是某些量子力學體系與外界發生某些作用後波函數發生突變,變為其中一個本徵態或有限個具有相同本徵值的本徵態的線性組合的現象。波函數坍縮可以用來解釋為何在單次測量中被測定的物理量的值是確定的,儘管多次測量中每次測量值可能都不同。 在某一些量子物理理论中,波函数的坍縮是量子系统遵守量子定律的两种方法之一。波函数坍縮的真实性并没有被完全地确定;科学家一直在争论,波函数坍縮是这个世界的自然现象之一,还是仅是屬於某個现象的一部份,比如量子去相干的附属现象。近年来,量子去相干已和波函數坍縮一起成為眾量子物理学家極力研究的理论之一。 Category:量子力学.

目录

  1. 6 关系: 线性组合量子量子力学量子退相干波函数本徵態

  2. 量子測量

线性组合

線性組合(Linear combination)是線性代數中具有如下形式的表达式。其中v_i为任意类型的项,a_i为标量。這些純量稱為線性組合的係數或權。.

查看 波函数坍缩和线性组合

量子

量子一詞來自拉丁语quantum,意為“有多少”,代表“相當數量的某物质”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學、量子光學等更成為不同的專業研究領域。 其基本概念为所有的有形性質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。 在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為瞭解和描述自然的的基本理論。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。.

查看 波函数坍缩和量子

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

查看 波函数坍缩和量子力学

量子退相干

在量子力學裏,開放量子系統的量子相干性會因為與外在環境發生量子糾纏而隨著時間逐漸喪失,這效應稱為--(Quantum decoherence),又稱為--。量子退相干是量子系統與環境因量子糾纏而產生的後果。由於量子相干性而產生的干涉現象會因為量子退相干而變得消失無蹤。量子退相干促使系統的量子行為變遷成為經典行為,這過程稱為「量子至經典變遷」(quantum-to-classical transition)。德國物理學者最先於1970年提出量子退相干的概念。自1980年以來,量子退相干已成為熱門研究論題。 實際而言,不存在孤立系統,特別是不存在孤立宏觀系統,通過某種方式,每個量子系統都會持續地與外在環境耦合,發生量子糾纏,從而形成糾纏態。因此,量子退相干可以視為存在於量子系統內部的相干性隨著時間流易而退定域(delocalize)至量子系統與環境所組成的糾纏系統,換句話說,量子系統內部的幾個成分彼此之間的相位關係,會逐漸地退定域至整個系統,也就是說,量子系統的相位信息會持續地洩露至環境,從而有效地促使伴隨著相干性的干涉現象消失無蹤。 量子退相干能夠解釋為什麼不會觀察到干涉現象,但是,量子退相干能否解釋波函數塌縮的後果,這論題至今仍舊存在巨大爭議,一個很重要的原因就是,很難將這論題跟量子力學的詮釋做分割,而人們各自有各自青睞的詮釋。量子退相干是一種標準量子力學效應,關於它是否能夠解釋波函數塌縮的後果,存在有很多種觀點,大多數過於樂觀或過於悲觀的觀點,皆可追溯至對於量子退相干運作範圍的誤解。 量子退相干不是一種量子力學詮釋,而是利用量子力學分析獲得的結果。它嚴格遵守量子力學,並沒有對量子力學的基礎表述做任何修改。很多完成的量子實驗已證實量子退相干的存在與正確性。 在實現量子計算機方面,量子退相干是一種必須面對的挑戰,因為量子計算機的運作倚賴維持量子相干態的演化不被環境攪擾。簡言之,必需良好維持量子相干態與管控量子退相干,才能夠實際進行量子運算。.

查看 波函数坍缩和量子退相干

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

查看 波函数坍缩和波函数

本徵態

#重定向 特征值和特征向量.

查看 波函数坍缩和本徵態

另见

量子測量