徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

莫特問題

指数 莫特問題

在量子力學裡,莫特問題(Mott problem)是一個弔詭,顯示出在研究波函數塌縮與量子測量時所遇到的困難。這問題最先由內維爾·莫特爵士與維爾納·海森堡於1929年表述為在雲室裡,球對稱性波函數塌縮為線形徑跡的弔詭。 實際而言,幾乎所有高能物理學實驗,例如那些在粒子碰撞器(particle collider)進行的實驗,涉及到的散射波函數都具有球對稱性。可是,粒子碰撞後的偵測結果,總是呈線形徑跡。這真是令人難以揣測,為什麼球對稱性波函數在實驗裏會展現為線形徑跡?然而,這是所有粒子碰撞實驗慣常得到的結果。 1953年,物理學者模里西斯·任寧格(Mauritius Renninger)給出一個相關的變版表述,知名為任寧格實驗(Renninger experiment)。在這表述裏,沒有偵測到粒子的事件也可以算為量子測量,換句話說,測量可以被完成,甚至在沒有偵測到任何粒子的狀況下。.

17 关系: 原子核大爆炸云室伊利澤-威德曼炸彈測試問題圓對稱理查德·費曼研究粒子物理學维尔纳·海森堡路徑積分表述量子力学量子測量自发对称破缺波函數塌縮悖论放射性散射

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

新!!: 莫特問題和原子核 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: 莫特問題和大爆炸 · 查看更多 »

云室

雲室是個用來偵測游離輻射的粒子偵測器。由英國物理學家查爾斯·威耳遜發明,因此又稱為威爾遜雲室。最簡單的雲室,只是一個密封的環境,裡面充滿過飽和的水蒸氣或酒精。當一束帶電粒子(α粒子或β粒子)與雲室內的混合物相互作用時,會將混合物離子化,造成的離子會扮演雲凝結核的角色,使離子的周圍產生霧氣(因為這些混合物剛好正處於凝結點)。帶電荷粒子走過的時候,會產生很多離子,所以就留下了它們走過的軌跡。這些軌跡的形狀獨特(如α粒子的軌跡較闊,顯示出碰撞造成的彎轉痕跡,β粒子較細與直)。當施加垂直的均勻磁場於雲室時,這些帶電粒子會偏轉,帶正電的偏轉向一邊,帶負電的會偏轉向另一邊,遵守洛侖茲力定律。 雲室對早期次原子研究是非常重要的,但目前已被其他粒子檢測器所取代,例如氣泡室。.

新!!: 莫特問題和云室 · 查看更多 »

伊利澤-威德曼炸彈測試問題

在量子力學裏,伊利澤-威德曼炸彈測試問題(Elitzur-Vaidman bomb testing problem)是由阿舍朗·伊利澤(Avshalom Elitzur)與列夫·威德曼(Lev Vaidman)於1993年提出的思想實驗,其使用來檢試一個物體是否處於某位置。「零作用測量」是一種量子測量,其能夠探測物體是否存在於某位置,而又不與該物體發生相互作用。奧地利因斯布魯克大學的安東·蔡林格、保羅·奎艾特(Paul Kwiat)、哈勞德·溫弗特(Harald Weinfurter)、湯瑪斯·荷紹葛(Thomas Herzog)與美國史丹佛大學的馬克·凱瑟威(Mark Kasevich)於1994年成功體現這思想實驗。在這實際實驗裏,馬赫-曾德爾干涉儀被用來檢試一個物體是否存在,而又不與該物體發生相互作用。.

新!!: 莫特問題和伊利澤-威德曼炸彈測試問題 · 查看更多 »

圓對稱

在數學物理領域,一個定義域為二維空間的函數,假若只與離某參考點的距離有關,則此函數具有圓對稱性(circular symmetry)。對於一組以此參考點為圓心的同心圓,在同一個同心圓的每一個位置,函數值都相同。 在一個與帶電流的電線垂直的平面,磁場具有圓對稱性。一個具有圓對稱性的圖案是由同心圓構成的。.

新!!: 莫特問題和圓對稱 · 查看更多 »

理查德·費曼

查德·菲利普斯·費曼(Richard Phillips Feynman,),美國理论物理學家,量子电动力学创始人之一,纳米技术之父。由費曼提出或完善的费曼图、费曼规则(Feynman rules)和重整化计算方法是研究量子电动力学和粒子物理学的重要工具。费曼个性十足,爱出风头,平易近人且喜爱搞怪,有很多逸闻流传于世。在1999年英國雜誌《》对全球130名領先物理學家的民意調查中,他被評為有史以來10位最偉大的物理學家之一。費曼父母皆為立陶宛猶太人,來自白俄羅斯,然而費曼本人是無神論者。 费曼业余爱好广泛,如打邦哥鼓、破译玛雅文明的象形文字、研究如何撬開保险櫃的鎖及逛脱衣舞厅等。他自己搜罗了不少这类故事,整理成了自传《别闹了,费曼先生!》。该书后來成为畅销大众读物。费曼是少数几个在大众心目中形象生动鲜活的前沿科学家之一。.

新!!: 莫特問題和理查德·費曼 · 查看更多 »

研究

是用主動和系統方式的過程,是為了發現、解釋或校正事實、事件、行為、或理論,或把這樣事實、法則或理論作出實際應用。「研究」一詞常用來描述關於某一特殊主題的資訊收集。 英文「研究(research)」源自中古法語,意思是徹底檢查。.

新!!: 莫特問題和研究 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

新!!: 莫特問題和粒子物理學 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 莫特問題和维尔纳·海森堡 · 查看更多 »

路徑積分表述

量子力學的路徑積分表述(path integral formulation)是一個從經典力學裡的作用原則延伸出來對量子物理的一種概括和公式化的方法。它以包括两點間所有路徑的和或泛函積分而得到的量子幅來取代經典力學裡的單一路徑。 路径积分表述的基本思想可以追溯到諾伯特·維納,他介绍的维纳积分解决扩散和布朗运动的问题。在1933年他的论文中,由保罗·狄拉克把这个基本思想被扩展到量子力学中的利用拉格朗日算符 。路徑積分表述是理論物理學家理查德·費曼在1948年發展出來。一些早期結果是在约翰·惠勒指导下的費曼的博士论文中在早些时候已经被摸索出。 因爲路徑積分的表述法顯然地把時間和空間同等處理,它成為以後理論物理學發展的重要工具之一。 路徑積分表述也把量子現像和随機現像联系起來。為1970年代量子場論和概括二級相變附近序參數波動的統計場論統一奠下基礎。薛定諤方程式是虛擴散系數的擴散方程,而路徑積分表述是把所有可能的随機移動路徑加起來的方法的解析延拓。因此路徑積分表述在應用於量子力學前,已經在布朗運動和擴散問題上被應用。.

新!!: 莫特問題和路徑積分表述 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 莫特問題和量子力学 · 查看更多 »

量子測量

在量子力學之中,所謂的「測量」需要有較嚴謹的定義,而特別稱之為量子測量。量子测量不同于一般经典力学中的测量,量子测量会对被测量子系统产生影响,比如改变被测量子系统的状态;处于相同状态的量子系统被测量后可能得到完全不同的结果,这些结果符合一定的概率分布。量子测量是量子力学解释体系的核心问题,而量子力学的解释目前还没有统一的结论。.

新!!: 莫特問題和量子測量 · 查看更多 »

自发对称破缺

自發對稱破缺(spontaneous symmetry breaking)是某些物理系統實現對稱性破缺的模式。當物理系統所遵守的自然定律具有某種對稱性,而物理系統本身並不具有這種對稱性,則稱此現象為自發對稱破缺。這是一種自發性過程(spontaneous process),由於這過程,本來具有這種對稱性的物理系統,最終變得不再具有這種對稱性,或不再表現出這種對稱性,因此這種對稱性被隱藏。因為自發對稱破缺,有些物理系統的運動方程式或拉格朗日量遵守這種對稱性,但是最低能量解答不具有這種對稱性。從描述物理現象的拉格朗日量或運動方程式,可以對於這現象做分析研究。 對稱性破缺主要分為自發對稱破缺與明顯對稱性破缺兩種。假若在物理系統的拉格朗日量裏存在著一個或多個違反某種對稱性的項目,因此導致系統的物理行為不具備這種對稱性,則稱此為明顯對稱性破缺。 如右圖所示,假設在墨西哥帽(sombrero)的帽頂有一個圓球。这個圓球是處於旋轉對稱性狀態,對於繞著帽子中心軸的旋轉,圓球的位置不變。這圓球也處於局部最大引力勢的狀態,極不稳定,稍加微擾,就可以促使圓球滾落至帽子谷底的任意位置,因此降低至最小引力勢位置,使得旋轉對稱性被打破。儘管這圓球在帽子谷底的所有可能位置因旋轉對稱性而相互關聯,圓球實際實現的帽子谷底位置不具有旋轉對稱性──對於繞著帽子中心軸的旋轉,圓球的位置會改變。 大多數物質的簡單相態或相變,例如晶體、磁鐵、一般超導體等等,可以從自發對稱破缺的觀點來了解。像分數量子霍爾效應(fractional quantum Hall effect)一類的拓扑相(topological phase)物質是值得注意的例外。.

新!!: 莫特問題和自发对称破缺 · 查看更多 »

波函數塌縮

#重定向 波函数坍缩.

新!!: 莫特問題和波函數塌縮 · 查看更多 »

悖论

悖論,亦稱為弔詭或詭局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一詞,来自希腊语παράδοξος ,paradoxos,意思是“未预料到的”,“奇怪的”。 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。 paradox其實亦有“似非而是”的解釋。即是用普通常識看上去不正確,但其實是正確或是有可能的。例如“站著比走路更累”。一般常識是走路比站著累,但要一個人例如在公園裡站一個小時,他可能寧願走動一個小時。因為“站著比走路更累”。也例如狹義相對論裡面的雙生子佯謬亦是另外一個例子。 佛法中也有釋迦牟尼佛破外道悖論的例子:如《大智度論》卷一中舉出長爪梵志的例子:長爪梵志提倡一種“一切法不受”的主張,其意思是說他不接受世間一切理論。釋迦牟尼佛就問他:「你接不接受你自己所建立的這個“一切法不受”的理論?」長爪梵志像一匹千里馬一樣有智慧,不必等到鞭子打到身上才起跑,只看到鞭影覺悟了。換句話說,當釋迦牟尼佛提出這個問題的時候,長爪梵志就知道自己的理論是有問題的──如果接受,那就是“接受一種理論”這與他自己建立的“一切法不受”的主張違背;如果不接受,那他的主張就不存在。就這樣,一方面顯示長爪梵志的理論是一種悖論,另一方面也突顯釋迦牟尼佛以非常簡短的開示就把長爪梵志折服了。.

新!!: 莫特問題和悖论 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 莫特問題和放射性 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 莫特問題和散射 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »