目录
29 关系: 原始色素體生物,叶绿体,双星藻目,受精卵,多細胞生物,學名,富营养化,微米,光合作用,克里斯琴·戈特弗里德·丹尼尔·尼斯·冯埃森贝克,細胞質,綠藻,纤维素,约翰·海因里希·弗里德里希·林克,细胞核,真核生物,鏈形植物,顯微鏡,變形蟲,轮藻门,藻類,配子,果胶,氧气,液胞,淡水,淀粉,有性生殖,性味。
- 双星藻科
原始色素體生物
原始色素體生物(Archaeplastida)即泛植物,是真核生物的主要群體。包括紅藻、綠藻、陸生植物(有胚植物)及少量合稱為灰胞藻的生物。除了植物以外,這個組的其他生物只具有部份的植物特性,例如红藻和灰胞藻沒有植物必須的葉綠素b。 所有這些生物體的色素體(葉綠體等)有兩層膜包圍,表明了這些生物體是直接内共生藍藻而進化来的。其它的真核生物的色素體包有3或4层膜,显示它们是通过内共生绿藻或红藻而获得的色素體。这也是本类生物称之为"原始色素體"生物的由来。 研究证据表明,红藻、绿藻与陆生植物明确形成了单系群,拥有共同起源。 原始色素体生物的细胞缺少中心粒,线粒体具有平的嵴,具有纤维素成分的细胞壁,以淀粉形式存储食物。然而,这些特点也可能被其它真核生物所拥有。 原始色素体生物可分为两条进化分支。红藻具有叶绿素a和藻胆蛋白(phycobiliprotein), 类似于大多数蓝藻。绿藻与陆生植物–被合称为绿色植物具有叶绿素a和叶绿素b,但缺少藻胆蛋白。灰胞藻具有典型的蓝藻色素,并且其色素体不寻常地有细胞壁,称为蓝小体(cyanelles)。.
查看 水綿和原始色素體生物
叶绿体
-- 葉綠體(chloroplast)是绿色植物和藻类等真核自养生物细胞中专业化亚单元的细胞器。其主要作用是进行光合作用,其中含有的光合色素叶绿素从太阳光捕获能量,并将其存储在能量储存分子ATP和NADPH,同时从水中释放氧气。然后,它们使用ATP和NADPH,在被称为卡尔文循环的过程中从二氧化碳制造有机分子。叶绿体实施许多其它功能,包括植物的脂肪酸合成,很多氨基酸的合成,和免疫反应。 叶绿体是三种类型的质体(plastid)之一,其特点是其高浓度的叶绿素。(其他两个质体类型是白色体和有色体,含有少量叶绿素并且不能进行光合作用。)叶绿体是高度动态的,它们循环并在植物细胞内四处移动,并且偶尔分裂成两个来生殖。它们的行为受到环境因素如光的颜色和强度的强烈影响。叶绿体和线粒体类似,拥有自身的遗传物质DNA,但因其基因组大小有限,是一种半自主细胞器。这DNA被认为是从已被古代真核生物的细胞吞没的有光合作用的蓝菌门祖先继承下来。叶绿体不能由植物细胞产生,且必须在植物细胞分裂期间由每个子细胞继承叶绿体。 英文中的“叶绿体”(chloroplast)一词来源于希腊语中的“χλωροπλάστης”,该词由“绿”(“chloros”或“χλωρός”)和“成型”(“plastis”或“πλάστης”)组合而成。.
查看 水綿和叶绿体
双星藻目
雙星藻目(Zygnematales)為藻類植物之一植物目。該植物於植物分類表上,歸於轮藻门(Charophyta)双星藻纲(Zygnematophyceae),為綱下唯一一目,包含水綿。 *.
查看 水綿和双星藻目
受精卵
受精卵(zygote、合子)在发育生物学中用来描述生物的第一阶段,此时它只是一个单细胞。这个词也会被较为宽松地运用于经过最初几分裂后的细胞,虽然严格地讲这一阶段应称为卵裂球(分裂球,裂球)。一枚受精卵通常是通过两个单倍体细胞——女性的卵子和男性的精子通过受精结合在一起,所形成的二倍体细胞。因此,受精卵包含了来自父亲和母亲的DNA,提供了一个新的个体的全部遗传信息。 在哺乳动物的繁殖过程中,受精后所形成的受精卵会移动到输卵管,分裂成更多的细胞,但其大小却不改变。 受精卵的分裂是有丝分裂,通常被称为“细胞分裂”。 所有的哺乳动物在一生中都会经过受精卵这一阶段。受精卵会发育成胚胎,然后变成胎儿。 人类受精卵会存在约大约4天,并在第5天成为囊胚,然后进一步发育为原肠胚。.
查看 水綿和受精卵
多細胞生物
多細胞生物是指由多个、分化的细胞组成的生物体,其分化的细胞各有不同的、專門的功能。大多數可以使用肉眼看到的生物是多细胞生物。 所有多細胞生物都屬於真核生物。.
查看 水綿和多細胞生物
學名
在生物分类学中,學名按字面即為科學名,名词组合基于拉丁文文法。它在科學,特別是生物學上使用的名稱。例如,廣為人所接受的植物 (生物)名稱;它也受到國際植物命名法規(ICBN)之規範。:「Scientific name: A formal, universally accepted name, the rules and regulations of which (for plants, algae, fungi and organisms traditionally treated as such) are provided by the International Code of Botanical Nomenclature.」。 學名的第一個字需大寫。而習慣上,在科學文獻的印刷出版時,學名之引用常以斜體表示,或是於正排体學名下加底線表示。學名内所指的有可能是一種生物、一屬的生物或一科的生物。这可因為不同的國際命名法規,有不同的變化。原則上,一種生物的學名只有一個,而這一個學名也只會用來稱呼這一種生物,但目前命名法規各自獨立,因此有可能出現同種動物、植物用同樣的學名。相對的親屬生物可能還有許多不同的名字,學名以外的名字均為俗名。學名使用拉丁化文字,而俗名沒有限制。除拉丁学名外的其他任何名称都是俗名。 目前已知最長的學名為雙翅目的,由42個字母組成,意思是「擁有近似黃蜂飛行姿態而接近水虻的」。最短的學名則分別為南蝠的 Ia io 和奇翼龍的 Yi qi,都僅有4個字母。.
查看 水綿和學名
富营养化
優養化又稱作富营养化(Eutrophication)是指湖泊、河流、水库等水体中氮、磷等植物营养物质含量过多所引起的水质污染现象。由于水体中氮、磷营养物质的富集,引起藻类及其他浮游生物的迅速繁殖,使水体溶解氧含量下降,造成藻类、浮游生物、植物、水生物和鱼类衰亡甚至绝迹的污染现象。 介紹 水體出現富營養化時主要表現為浮游生物的大量繁殖,因佔優勢的浮游生物的不同而水面往往呈現出藍色、紅色、棕色和乳白色等。在江河、湖泊和水庫中稱為-zh-hant:藻華; zh-hans:水華-,在海洋中稱為赤潮。.
查看 水綿和富营养化
微米
微米(Micrometer、㎛)是长度单位,符号µm。1微米相当于1米的一百萬分之一(10-6,此即為「微」的字義)。此外,在ISO 2955的国际标准中,“u”已经被接纳为一个代替“μ”来代表10-6的国际单位制符号。微米是红外线波长、细胞大小、细菌大小等的数量级。.
查看 水綿和微米
光合作用
光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.
查看 水綿和光合作用
克里斯琴·戈特弗里德·丹尼尔·尼斯·冯埃森贝克
克里斯琴·戈特弗里德·丹尼尔·尼斯·冯埃森贝克(Christian Gottfried Daniel Nees von Esenbeck,)为德国植物学家。他描述了约7000种植物(几乎和林奈一样多)。他最后一个官方的任职是利奥波第那科学院的主席,期间他接受了查尔斯·达尔文的加入。此外,他还是众多植物学和动物学专著的作者。他最著名的作品是关于真菌的。.
細胞質
細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.
查看 水綿和細胞質
綠藻
綠藻是一種真核細胞的微生物,可以在包括海水、淡水和汽水等所有的水中環境裡被找到。 綠藻是為有胚植物根源的藻類中的一大類群,本身是一個併系群,有時被歸在植物界,有時則又被歸在原生生物界裡。綠藻是單細胞或群集的鞭毛生物,一般一個細胞有兩個鞭毛,但也會有群集、粒狀和絲狀等不同的型式。車軸藻是最接近高等植物的近親,存在著完全分化的身體組織。綠藻約有6000個物種。Thomas, D.
查看 水綿和綠藻
纤维素
纤维素(cellulose)是一类有機化合物,其化學通式为,是由幾百至幾千個β(1→4)連接的D-葡萄糖單元的線性鏈(糖苷键)組成的多醣。纖維素是綠色植物的,許多形式的藻類的和卵菌的原代細胞壁的重要結構組分;一些種類的細菌分泌它以形成生物膜。纖維素是地球上最豐富的有機聚合物,是自然界中分布最广、含量最多的一种多醣,是组成植物细胞壁的主要成分。棉花、亚麻、苧麻和黄麻部含有大量优质的纤维素。棉花纤维中的纤维素含量是90%,木头中纤维素含量是40%-50%,干燥的麻中纤维素含量是57%。 天然纤维素为无味的白色丝状物。纤维素不溶于水、稀酸、稀碱和有机溶剂,但在加热的条件下会被酸水解,主要的生物学功能是构成植物的支持组织。.
查看 水綿和纤维素
约翰·海因里希·弗里德里希·林克
约翰·海因里希·弗里德里希·林克(Johann Heinrich Friedrich Link)是德国植物学家。 林克出生于希尔德斯海姆,在位于格丁根的汉诺威州立大学学习医学和自然科学,1789年获得医学博士学位,毕业论文是《格丁根地区岩石层的植物》,1792年,他成为罗斯托克大学新成立的化学、动物学和植物学系的第一位教授,他相信拉瓦锡的理论,不再教学生“热素”的理论,而代之新的氧气理论,他在讲授化学时也引入了最新的化学计量学理论,1806年他创建了罗斯托克第一个化学实验室,在此期间,他写了多篇化学、物理、地理、矿物学、动物学的论文。 1797年-1799年,他去葡萄牙考察,这次旅行使他最终确定将植物学作为他的主要研究方向。1800年他被选为利奥波德德国国家科学院院士,1808年,他获得圣彼得堡科学院奖。1811年,他被聘任为弗罗茨瓦夫大学的化学和植物学教授,1815年,被聘任为柏林植物园园长和标本馆馆长,直到他去世,这一阶段是他科学成果最丰富的阶段,他将植物园扩大到包括14 000种,有许多珍稀品种,1827年他命名了金琥属(Echinocactus)、花座球属(Melocactus)等,以及真菌如虫草属(Cordyceps)、 镰刀菌属(Fusarium)、光果菌属(Leocarpus)、黏菌类(Myxomycetes)、多孢锈菌属(Phragmidium)等。 他被选为柏林科学院院士,最终在柏林逝世。.
细胞核
细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.
查看 水綿和细胞核
真核生物
真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.
查看 水綿和真核生物
鏈形植物
#重定向 链型植物.
查看 水綿和鏈形植物
顯微鏡
顯微鏡泛指將微小不可見或難見物品之影像放大,而能被肉眼或其他成像儀器觀察之工具。日常用語中之顯微鏡多指光學顯微鏡。放大倍率和清析度(聚焦)為顯微鏡重要因素。 显微镜是在1590年由荷兰的詹森父子所首创。顯微鏡的類型有許多。最常見的(和第一個被發明的)是光學顯微鏡,其使用樣品的光圖像。其他主要的顯微鏡類型是電子顯微鏡(透射電子顯微鏡和掃描電子顯微鏡),超顯微鏡,和各種類型的掃描探針顯微鏡。.
查看 水綿和顯微鏡
變形蟲
變形蟲,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴變形蟲或阿米巴虫或稱食腦蟲(透過感染鼻腔而進入腦部感染的死亡率高達九成)。是一种单细胞原生动物,僅由一個細胞構成,可以根据需要改變體形,因而得名变形虫。变形虫以往是分類於原生生物界,現則獨立歸於變形蟲界(Kingdom Amoebozoa)。.
查看 水綿和變形蟲
轮藻门
輪藻門是綠藻的一門,包含了最親近有胚植物的親戚。因為排除了有胚植物,輪藻門是個併系群(然而有時會限定成單純只有輪藻目而已,其為單系群的)。 藻体构造较复杂,有类似根、茎、叶的分化,大小约为10-50厘米,外形很像金鱼藻;“茎”节上轮生侧“枝”,“枝”上具有“叶”的生殖器官;有性生殖为卵式生殖;卵囊生于“叶”腋中,通常呈卵形,外有5个螺旋状缠绕的管细胞,在顶端形成5个冠细胞,卵囊初为绿色,成熟时为深褐色;球形精子囊生于卵囊下面,外有8个盾形细胞,初为绿色,成熟后为橘红色。 轮藻属都没有无性生殖,而进行卵配生殖。雌、雄生殖器官结构复杂,具藏精器和藏卵器,由两个遗传性、形状、大小和结构等方面都不相同的配子融合。轮藻的营养体、生殖器官和轮藻细胞的有丝分裂皆与陆生的植物相似。.
查看 水綿和轮藻门
藻類
藻類,又稱作懸浮植物,包括數種不同類以光合作用產生能量的生物,其中有屬於真核細胞的藻類,也有屬於原核細胞的藻類。它們一般被認為是簡單的植物,並且一些藻類與比較高等的植物有關。雖然其他藻類看似從藍綠藻得到光合作用的能力,但是在演化上有獨立的分支。所有藻類缺乏真的根、莖、葉和其他可在高等植物上發現的組織構造。藻類與細菌和原生動物不同之處,是藻類產生能量的方式為光合自營。 藻類涵蓋了原核生物、原生生物界和植物界。原核生物界中的藻類有生活在無機動物中的原核綠藻。屬於原生生物界中的藻類有裸藻門、甲藻門(或稱渦鞭毛藻)、隱藻門、金黃藻門(包括矽藻等浮游藻)、紅藻門、綠藻門和褐藻門。而生殖構造複雜的輪藻門則屬於植物界。屬於大型藻者一般僅有紅藻門、綠藻門和褐藻門等為大型肉眼可顯而易見之固著性藻類。此類大型藻幾乎99%以上之種類棲息於海水環境中,故大型藻多以海藻稱之。另外,有些肉眼可見的固著性藍綠藻和少數之矽藻嚴格而言應該亦屬於大型藻的範圍。.
查看 水綿和藻類
配子
配子(Gamete)是单倍体细胞,它由行有性生殖的生物在特定的器官通过减数分裂产生。两性配子通过配子结合 产生合子。 有性生殖的好处是遗传訊息的重组,这也是物种内遗传信息的多样性的由来,当自体受精被阻止时,效果就更明显。这是通过交配类型的不同(即:性别)实现的。个体和该个体产生的配子属于同种性别,而同种性别的配子是不能融合的。性别体现在生理方面,有时也体现在外形上(请见异形配子)。大部分种属有两种性别,但也有种有两种以上的性别。 在较原始的生命形式例如单细胞鞭毛虫,它们的配子外形与其他正常相似无异。但是在一些多细胞藻类,相互之间能融合的配子则是外貌上难以被区分,它们被称为同形配子,这种配子的融合被称做同配生殖。其实同形配子在生理上是有分别的,就是说它俩属于不同的交配类型。人们为了以示区别,将两者分别命名为+配子和-配子。 但大多数生物的配子在形态上就可以被区分开来,它们被称为异形配子和。还有如草履虫者,分为小型的,能动的小配子和大的,难动的大配子两种。而在卵式生殖中,人们将两种性别称为雌性和雄性。雌性配子不能活动,被称做卵细胞。它比雄性配子大很多,即精子。但有些生物的精子是不能动的,被称为精细胞。 Category:古典遗传学 Category:生殖细胞 Category:生殖系统.
查看 水綿和配子
果胶
果胶(pectin),是一类天然高分子化合物,它主要存在于所有的高等植物中,是植物细胞间质的重要成分。果胶沉积于初生细胞壁和细胞间层,在初生壁中与不同含量的纤维素、半纤维素、木质素的微纤丝以及某些伸展蛋白(extensin)相互交联,使各种细胞组织结构坚硬,表现出固有的形态,为内部细胞的支撑物质。它于1825年被()第一次分离和描述。 日常生活中,果膠通常從柑橘的果皮萃取,通常呈黃色或白色的粉末狀,具有凝膠、增稠及乳化等作用。果胶也是一種天然的食物添加劑,為制造果酱、果冻、酸奶及雪糕等。此外,果膠也可為水果保鮮之用。 在醫學上果膠增加大便的粘度與份量,這樣它被用於便秘和腹瀉的治療。直到2002年伴隨著高嶺石,它是(Kaopectate)藥物、治療腹瀉的主要成分之一。它也被用於去除從生物系統中溫和的重金屬。果膠也用在喉片作為鎮痛緩和劑使用。.
查看 水綿和果胶
氧气
氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.
查看 水綿和氧气
液胞
液胞(、 法语、英语、荷兰语:vacuole、 ),又稱為液泡,是一種囊狀的單層膜胞器,在其中有细胞液,为酸性环境。液泡的作用在于存储并降解细胞中的废物和有害物质。液泡也可以参与自体吞噬,以维持许多细胞内结构的生成和降解平衡。液胞佔據了植物细胞體積的大部分。.
查看 水綿和液胞
淡水
淡水,是水質中僅有微量溶解的氯化鈉的水,是相對於海水或礦泉水的一種水體。.
查看 水綿和淡水
淀粉
淀粉(starch, amylum)是由通過糖苷鍵連接的大量葡萄糖單元組成的聚合碳水化合物,属于一种多醣。制造淀粉是绿色植物贮存能量的一种方式。淀粉也是人类饮食中最常见的碳水化合物,广泛存在于马铃薯,小麦,玉米,大米,木薯等主食中。 纯淀粉是一种白色,无味,无臭的粉末,不溶于冷水或酒精,分子式为(C6H10O5)n。淀粉因分子内氢键卷曲成螺旋结构的不同,可分为直链淀粉(糖淀粉)和支链淀粉(胶淀粉)。前者为无分支的螺旋结构;后者以24~30个葡萄糖残基以α-1,4-糖苷键首尾相连而成,在支链处为α-1,6-糖苷键。直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色。这是由于淀粉螺旋中央空穴恰能容下碘分子,由于范德华力,两者形成一种蓝黑色錯合物。实验证明,单独的碘分子不能使淀粉变蓝,实际上使淀粉变蓝的是三碘阴离子(I3-)。 淀粉在食品工业中被加工以产生多种糖。淀粉在温水中溶解产生糊精,这可以用作增稠剂,硬化則作為粘接剂。淀粉在非食品工业最广泛的用途是在造纸过程中作为粘合剂。.
查看 水綿和淀粉
有性生殖
有性生殖是生殖的一种类型,它导致了后代加强基因多样化。它可以用两个进程刻画。第一个是减数分裂,涉及将染色体个数减半。第二个是受精,它使得两个配偶子融合,并恢复原来的染色体个数。在减数分裂时,每对染色体通常交叉以达到基因重组。 性的演变是现代演化生物学的重大谜团。最早的有性繁殖的生物的化石证据是来自狭带纪的真核细胞,距今约12到10亿年。有性生殖是绝大多数可见生命体的繁殖形式,包括几乎所有的动物和植物。细菌接合(bacterial conjugation),也就是两个细菌之间的DNA转移,有时被错误地视为有性生殖,因为机理其实很相似。 当代进化论观点提出了为何虽然单性生殖在有些方面是更强的生殖形式,但有性生殖依然持续存在的一些理由。有性生殖可能是因为在进化树本身上的压力而保持下来 - 因为通过有性重组比单性繁殖更能产生适应变化的环境的分支,並有效處理突變與寄生蟲而将物种散布出去。或者,有性生殖可能像'棘轮'那样控制了进化发展的速度,因为一个进化枝会和另一个竞争有限的资源。.
查看 水綿和有性生殖
性味
性味(又称四气五味),是传统的中药分类方法之一。大多数食物材料因此也为中医认为是药材而也有性味的分类。 药物根据作用于人体的结果,可分为寒、热、温、凉四种药性(四气)。寒凉性药一般有清热泻火解毒类作用,用来治疗热性病症。温热性药则一般有温中助阳、散寒作用,用来治疗寒性病症。另外还有一种性质平和,作用缓慢的药物,称为平性。 药物又可分为辛、甘、酸、苦、鹹五味:.
查看 水綿和性味
另见
双星藻科
- 水綿
亦称为 水棉屬。