徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

淀粉

指数 淀粉

淀粉(starch, amylum)是由通過糖苷鍵連接的大量葡萄糖單元組成的聚合碳水化合物,属于一种多醣。制造淀粉是绿色植物贮存能量的一种方式。淀粉也是人类饮食中最常见的碳水化合物,广泛存在于马铃薯,小麦,玉米,大米,木薯等主食中。 纯淀粉是一种白色,无味,无臭的粉末,不溶于冷水或酒精,分子式为(C6H10O5)n。淀粉因分子内氢键卷曲成螺旋结构的不同,可分为直链淀粉(糖淀粉)和支链淀粉(胶淀粉)。前者为无分支的螺旋结构;后者以24~30个葡萄糖残基以α-1,4-糖苷键首尾相连而成,在支链处为α-1,6-糖苷键。直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色。这是由于淀粉螺旋中央空穴恰能容下碘分子,由于范德华力,两者形成一种蓝黑色錯合物。实验证明,单独的碘分子不能使淀粉变蓝,实际上使淀粉变蓝的是三碘阴离子(I3-)。 淀粉在食品工业中被加工以产生多种糖。淀粉在温水中溶解产生糊精,这可以用作增稠剂,硬化則作為粘接剂。淀粉在非食品工业最广泛的用途是在造纸过程中作为粘合剂。.

42 关系: 古埃及多糖小麦三碘阴离子人类二氧化碳减肥勾芡玉米玉米澱粉硫酸糊精糖尿病糖苷键紙莎草纺织工业生物塑料盧戈氏碘液直鏈澱粉食品产业馬鈴薯澱粉马铃薯高血壓高果糖浆范德华力能量葡萄糖银镜反应银氨溶液膽固醇膽石症配合物老普林尼植物氢键氧化亚铜木薯斐林试剂支链淀粉

古埃及

古埃及(مصر القديمة)是位於非洲东北部尼罗河中下游地区的一段时间跨度近3000年的古代文明,开始于公元前32世纪左右时美尼斯统一上下埃及建立第一王朝,终止于公元前343年波斯再次征服埃及,雖然之後古埃及文化還有少量延續,但到公元以後的時代,古埃及已經徹底被異族文明所取代,在連象形文字也被人們遺忘後,古代史前社會留給後人的是宏偉的建築與無數謎團,1798年,拿破仑远征埃及,发现罗塞塔石碑,1822年法国学者商博良解读象形文字成功,埃及学才诞生,古埃及文明才重见天日。直到今日都還不斷被挖掘出來。 古埃及的居民是由北非的土著居民和来自西亚的遊牧民族塞姆人融合形成的多文化圈。約西元前6000年,因為地球軌道的運轉規律性變化、間冰期的高峰過去等客觀氣候因素,北非茂密的草原開始退縮,人們放棄游牧而開始尋求固定的水源以耕作,即尼羅河河谷一帶,公元前4千年后半期,此地逐渐形成国家,至公元前343年为止,共经历前王朝、早王朝、古王国、第一中间期、中王国、第二中间期、新王国、第三中间期、后王朝9个时期31个王朝的统治(参见“古埃及歷史”一节)。其中古埃及在十八王朝时(公元前15世纪)达到鼎盛,南部尼罗河河谷地带的上埃及的領域由現在的蘇丹到埃塞俄比亞,而北部三角洲地区的下埃及除了現在的埃及和部份利比亚以外,其東部邊界越過西奈半島直達迦南平原。杨洪强编著,《古埃及文明-全球史之四》,2005年 在社會制度方面,古埃及有自己的文字系统,完善的行政体系和多神信仰的宗教系统,其统治者称为法老,因此古埃及又称为法老时代或法老埃及江晓原,12宫与28宿:世界历史上的星占学,辽宁教育出版社,2005年5月,45-64 ISBN 7-5382-7184-8。古埃及的国土紧密分布在尼罗河周围的狭长地带,是典型的水力帝国。古埃及跟很多文明一樣,具有保存遺體的喪葬習俗,透過這些木乃伊的研究能一窺當時人們的日常生活,对古埃及的研究在学术界已经形成一门专门的学科,称为“埃及学”。 古埃及文明的产生和发展同尼罗河密不可分,如古希腊历史学家希罗多德所言:“埃及是尼罗河的赠礼。”古埃及时,尼罗河几乎每年都泛滥,淹没农田,但同时也使被淹没的土地成为肥沃的耕地。尼罗河还为古埃及人提供交通的便利,使人们比较容易的来往于河畔的各个城市之间。古埃及文明之所以可以绵延数千年而不间断,另一个重要的原因是其相对与外部世界隔绝的地理环境,古埃及北面和东面分别是地中海和红海,而西面则是沙漠,南面是一系列大瀑布,只有东北部有一个通道通过西奈半岛通往西亚。这样的地理位置,使外族不容易进入埃及,从而保证古埃及文明的穩定延续。相比较起来,周围相对开放的同时代的两河流域文明则经常被不同民族所主宰,兩者對後世所帶來的價值觀也完全不同。.

新!!: 淀粉和古埃及 · 查看更多 »

多糖

多醣(Polysaccharide)由多個單醣分子脫水聚合,以糖苷键连接而成,可形成直鏈或者有分支的長鏈,水解后得到相应的單醣和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结构的纤维素和甲壳素。 多糖常常由略带修饰的重复单元构成。由于结构不同,多糖高分子和构成它的单糖分子性质迥异,可能无定形,甚至不溶于水。 自然界中存在的糖类(如葡萄糖、果糖和甘油醛)一般为单糖,通式为(CH2O)n,其中 n\ge 3。与此相对,多糖的通式为为CxH2O)y,其中x通常在200到2500之间。鉴于多糖通常由六碳糖构成,多糖的通式也可写作(C6H10O5)n,其中 40\le n\le 3000,不过多糖和寡糖的分界见仁见智。 多糖是一种重要的生物高分子,在生物中有储存能量和组成结构的作用。淀粉(包括直链淀粉和支链淀粉)是葡萄糖的聚合物,在植物中用来储存能量。动物将能量储存在糖原(也叫动物淀粉)中。糖原也是由葡萄糖聚合而成,但分子中支链更多。动物更活跃,所以利用的是代谢更快的糖原。 纤维素和甲壳素是两种组成生物结构的多糖。纤维素构成植物的细胞壁,可谓地球上数量最多的有机分子。纤维素应用广泛,不仅在造纸业和纺织业中举足轻重,而且是生产人造丝、醋酸纤维素、赛璐珞、硝化纤维等的原料。甲壳素结构和纤维素类似,但支链中含有氮,所以强度更高。其存在于节肢动物的外骨骼和真菌的细胞壁中。甲壳素也有很多作用,比如可用作手术缝合线。.

新!!: 淀粉和多糖 · 查看更多 »

小麦

小麥是小麥屬(学名:Triticum)植物的統稱Belderok, Bob & Hans Mesdag & Dingena A. Donner.

新!!: 淀粉和小麦 · 查看更多 »

三碘阴离子

在化学中,三碘化物有多种含义。它主要指三碘阴离子——I3−,一种由3个碘原子构成的多碘离子。含有这种离子的化合物有三碘化钠、三碘化铊和三碘化铵()。这些化合物中只有单个对应的碘离子。在其他一些化合物中,三碘化物中3个碘原子之间并没有形成共价键,也就是没有形成三碘阴离子。例如三碘化氮 (NI3)、三碘化磷、三碘化锑和三碘化镓 (Ga2I6)。一些阳离子理论上有可能同时形成这两种化合物,三碘化铊被认为是三碘化铊(I),而三碘化铊(III)还未制得。.

新!!: 淀粉和三碘阴离子 · 查看更多 »

人类

#重定向 人.

新!!: 淀粉和人类 · 查看更多 »

二氧化碳

二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空氣中常見的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空氣中有微量的二氧化碳,約佔0.04%。二氧化碳略溶於水中,形成碳酸,碳酸是一種弱酸。 在二氧化碳分子中,碳原子的成键方式是sp杂化轨道与氧原子成键。碳原子的两个sp杂化轨道分别与两个氧原子生成两个σ键。碳原子上两个没有参加杂化(混成)的p轨道与成键的sp杂化轨道成90°的直角,并同氧原子的p轨道分别发生重叠,故缩短了碳氧键的间距。 二氧化碳平均约占大气体积的400ppm,不過每年因為人為的排放增加,比率還在逐步上升。2018年4月大氣二氧化碳月均濃度超過410ppm,為過去80萬年來最高。大气中的二氧化碳含量随季节变化,这主要是由于植物生长的季节性变化而导致的。当春夏季来临时,植物由于光合作用消耗二氧化碳,其含量随之减少;反之,当秋冬季来临时,植物不但不进行光合作用,反而制造二氧化碳,其含量随之上升。 二氧化碳常壓下為無色、無味、不助燃、不可燃的氣體。二氧化碳是一種溫室氣體。二氧化碳的濃度自1900年至2016年11月增長了約127ppm。.

新!!: 淀粉和二氧化碳 · 查看更多 »

减肥

减肥,又稱纖體、瘦身或秀身,是指採用人為手段故意降低体重,特别是减少体内的脂肪。减肥的原因主要有:.

新!!: 淀粉和减肥 · 查看更多 »

勾芡

勾芡,一種烹調方法。可以使食物色味更佳,增加食慾。也叫着腻,或作「勾縴」。粵語有時也稱打芡。芡是用各種澱粉加凉水搅匀的液汁。 芡粉,原本是指芡实的粉末,主要成分是淀粉,后来也指同样主要成分是淀粉的其他替代品,比如太白粉、玉米澱粉、菱粉、藕粉、马铃薯淀粉、綠豆粉、麥澱粉等等。.

新!!: 淀粉和勾芡 · 查看更多 »

玉米

玉米(学名:Zea mays)是一年生禾本科草本植物,是全世界总产量最高的重要粮食作物。同時也可以當作飼料使用,還有在生物科技產業作為乙醇燃料的原材料。而且玉米更在各個化工領域被大量利用著,做成塑膠等等不同的物品。.

新!!: 淀粉和玉米 · 查看更多 »

玉米澱粉

玉米澱粉,俗作玉米粉,亦稱作粟粉,是生粉的一種,用玉米製成的澱粉。.

新!!: 淀粉和玉米澱粉 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

新!!: 淀粉和硫酸 · 查看更多 »

稻或米或飯(已煮熟米),俗称大米,是人類重要的糧食作物之一,耕種及食用的歷史相當悠久,分為水稻和光稃稻。稻的栽培起源于約西元前8200年南中國珠江中游的聚落地帶Huang, Xuehui; Kurata, Nori; Wei, Xinghua; Wang, Zi-Xuan; Wang, Ahong; Zhao, Qiang; Zhao, Yan; Liu, Kunyan et al.

新!!: 淀粉和稻 · 查看更多 »

糊精

糊精(dextrin、pyrodextrin)是淀粉的不完全水解产物,有固定的分子通式,但是碳链长短不一定相同。.

新!!: 淀粉和糊精 · 查看更多 »

糖尿病

糖尿病(diabetes mellitus,缩写为DMs,简称diabetes)是一種代謝性疾病,它的特徵是患者的血糖長期高於標準值。高血糖會造成俗稱「三多一少」的症狀:、 、及體重下降。對於第一型糖尿病,其症狀會在一個星期至一個月期間出現,而對於第二型糖尿病則較後出現。不論是哪一種糖尿病,如果不進行治療,可能會引發許多併發症。一般病徵有視力模糊、頭痛、肌肉無力、傷口癒合緩慢及皮膚很癢。急性併發症包括糖尿病酮酸血症與;嚴重的長期併發症則包括心血管疾病、中風、慢性腎臟病、、以及視網膜病變等。 糖尿病有兩個主要成因:胰臟無法生產足夠的胰島素,或者是細胞對胰島素不敏感。全世界糖尿病患人數,1997 年為 1 億 2,400 萬人,2014年全球估计有4.22亿成人患有糖尿病。由於糖尿病患人數快速增加及其併發症,造成財務負擔、生活品 質下降,因此聯合國將每年的 11 月 14 日定為「聯合國世界糖尿病日」。.

新!!: 淀粉和糖尿病 · 查看更多 »

糖苷键

糖苷键(Glycosidic bond,旧称配糖键)是指特定類型的化學鍵,連接糖苷分子中的非糖部分(即苷元)與糖基,或者糖基与糖基。含有配糖鍵的物質稱為糖苷(或配糖體)。 根據與糖基異頭碳原子相連的原子的不同,糖苷鍵一般可分為氧苷鍵、氮苷鍵、硫苷鍵和碳苷鍵等。右圖中核糖與腺嘌呤之間的糖苷鍵是氮苷鍵。.

新!!: 淀粉和糖苷键 · 查看更多 »

紙莎草

紙莎草(学名:Cyperus papyrus),又稱紙草(Paper reed)、蒲草(Bulrush)、埃及莎草、埃及紙草、埃及蒲草、尼羅草(Nile grass)、印度叢草(Indian matting plant)。屬於莎草科莎草屬。是北非洲原產的一種多年生草本植物。.

新!!: 淀粉和紙莎草 · 查看更多 »

纺织工业

纺织工业涉及的领域很多,分类方式也有几种,可以按照纺织加工的材料来分:.

新!!: 淀粉和纺织工业 · 查看更多 »

生物塑料

生物塑料(Bioplastic)是来自于可再生的生物质来源的塑料,如来自于植物油,玉米淀粉,豌豆淀粉或微生物群。常见的塑料,如化石燃料塑料是从石油中提炼,这些塑料更多地依赖化石燃料和产生更多的温室气体。一部分但不是全部的生物塑料是可以生物降解的塑料。可生物降解的生物塑料在无氧或有氧环境能够分解,这取决于它们是如何制造的。生物塑料可有各种各样的材料组成,包括:淀粉、纤维素或其他生物聚合物。一些常见的生物塑料的应用是包装材料、餐具、食品包装和绝缘。.

新!!: 淀粉和生物塑料 · 查看更多 »

盧戈氏碘液

盧戈氏碘液的成份為5%碘、10%碘化鉀的清水。碘本身很难在水溶解,但是假如水中已经有溶解了的碘离子的话,那么碘可以通过形成多碘离子而溶解: 因此在水中溶解碘时同时溶解碘化钾。 碘很容易溶解在乙醇,但是由于乙醇易燃、易挥发、有时会导致副作用,因此有时乙醇不宜作为溶液。溶有碘的乙醇称为碘酒。 盧戈氏碘液是1835年法国医生让·卢戈发明的。.

新!!: 淀粉和盧戈氏碘液 · 查看更多 »

直鏈澱粉

鏈澱粉又称糖澱粉,是一種由葡萄糖組成的線性聚合物,各葡萄糖單體主要以α(1→4)糖苷鍵連接,每個直鏈澱粉分子通常含有數千個葡萄糖單體。直鏈澱粉與支鏈澱粉(膠澱粉)組成生物中常見的澱粉。 α(1→4)糖苷鍵導致直鏈澱粉應承螺旋狀結構,右圖為其分子結構式,其重複的葡萄糖单體數目通常为300個到3000個。 直鏈澱粉的水解消化作用比支鏈澱粉緩慢,但作為能量儲存物質,直鏈澱粉佔據較少空間,因而植物中有約20%的澱粉是直鏈澱粉。澱粉酶在直鏈澱粉分子的末端,通過水解作用把直鏈澱粉拆散為葡萄糖單體,因支鏈澱粉擁有更多的末端,所以相對水解速度較快。 碘能夠與澱粉糖螺旋結構內部結合,使吸收光線的波長改變,因此若使用少量的黃色碘溶液與澱粉混合,將會產生藍黑色。經由紅色濾鏡的彩色分析儀,可以由色彩計算出澱粉濃度。直鏈澱粉树脂也可以用于麦芽糖结合蛋白的分离。.

新!!: 淀粉和直鏈澱粉 · 查看更多 »

食品产业

食品产业是全球不同行业的综合体,这些产业提供了由世界人口消费的食物能量的。只有那些自给自足型农业可以被认为不在现代食品产业之内。 食品产业包括:.

新!!: 淀粉和食品产业 · 查看更多 »

馬鈴薯澱粉

#重定向 太白粉.

新!!: 淀粉和馬鈴薯澱粉 · 查看更多 »

马铃薯

鈴薯(学名:Solanum tuberosum),属茄科多年生草本植物,块茎可供食用,是全球第四大重要的粮食作物,仅次于稻米、玉米和小麦。原產於南美洲秘魯與波利維亞境內的安地斯山脈。王瑞章等人.馬鈴薯栽培管理技術.行政院農業委員會臺南區農業改良場,臺南馬鈴薯的人工栽培最早可追溯到大约公元前8000年到公元前5000年的秘鲁南部地区。Office of International Affairs, Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation (1989) 馬鈴薯是歐美地區許多國家的主食,為世界第四大主食作物。.

新!!: 淀粉和马铃薯 · 查看更多 »

高血壓

血压(Hypertension (HTN)或high blood pressure),全稱动脉高血压(Arterial hypertension),是一种动脉血压升高的慢性病。血压的升高使心脏推动血液在血管内循环时的负担增大。血压有两种,收缩压和舒张压,分别为心脏跳动时肌肉收缩(systole)或舒张(diastole)时的测量值。正常静息血压范围为收缩压90–139mmHg(最高读数)和舒张压60–89mmHg(最低读数)。血压持续等于或高于140/90毫米汞柱mmHg时则为高血压。 高血压分为或。约90–95%的病例为"原发性高血压",即没有明显病因的高血压。 其余5–10%的病例由影响肾脏、血管、心脏或内分泌系统的其它病症引发(继发性高血压)。 高血压是中风、心肌梗塞(心梗)、心衰竭、动脉瘤(如主动脉瘤)及外周动脉疾病等重症的主要之一,也是慢性肾病的起因之一。即使轻度的动脉血压升高也能缩短期待寿命。改变饮食及生活方式可以改善对血压的控制并减少相关的健康风险。但如果生活方式改变没有起效或效用不佳则这些患者常需要使用药物治疗。 高血壓類性疾病名列中華民國十大死因之一。.

新!!: 淀粉和高血壓 · 查看更多 »

高果糖浆

果糖浆(High-fructose corn syrup、簡稱HFCS)亦称果葡糖浆、高果糖玉米糖漿或葡萄糖异构糖浆,是以酶法糖化淀粉所得到的糖化液经葡萄糖异构酶的异构作用,将一部分葡萄糖异构成果糖,由葡萄糖和果糖组成的一种混合糖浆。果葡糖浆亦特指果糖含量较低的混合糖浆。在美國,高果糖浆常用於增加商業食品的甜味,例如各類飲品、麵包、麥片、零食、煙肉、酸奶、湯料和調味劑等。.

新!!: 淀粉和高果糖浆 · 查看更多 »

范德华力

范德华力(Van der Waals force)在化学中指分子之间非定向的、无饱和性的、较弱的相互作用力,根据荷兰物理学家约翰内斯·范德瓦耳斯命名。范德华力是一种电性引力,但它比化学鍵或氢键弱得多,通常其能量小於5kJ/mol。范德华力的大小和分子的大小成正比。 范德华力的主要来源有三种机制:.

新!!: 淀粉和范德华力 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 淀粉和能量 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 淀粉和葡萄糖 · 查看更多 »

银镜反应

银镜反应(英語:silver mirror reaction)是一價银化合物的溶液被还原为金属银的化学反应,由于生成的金属银附着在容器内壁上,光亮如镜,故称为银镜反应。常见的银镜反应是银氨络合物〈氨銀錯合物〉(又称多倫试剂)被醛类化合物还原为银,而醛被氧化为相应的羧酸根离子的反应,不过除此之外,某些一價银化合物(如硝酸银)亦可被还原剂(如肼)还原,产生银镜。 银镜反应通常是中学化学实验之一。实验室中用这个反应来鉴定含有醛基的化合物,工业上则用这个反应来对玻璃涂银制镜和制保温瓶胆。.

新!!: 淀粉和银镜反应 · 查看更多 »

银氨溶液

银氨溶液(Tollens' reagent),也称多伦试剂、吐伦试剂、土伦试剂,指含有二氨合银(I)离子(+)的水溶液,一般由硝酸银或其他银化合物与氨水反应制取,用作银镜反应的试剂。.

新!!: 淀粉和银氨溶液 · 查看更多 »

膽固醇

膽固醇,別名膽甾醇,是一種類固醇及甾醇,化學式為C27H46O。固態是一種無色的結晶。 膽固醇是在1784年在希臘首次被發現的。其命名為希臘文中的chole-(膽汁)加上 stereos(固體),再加上其化學結構中有羥基,故再接上"-ol"在結尾上。膽固醇在人體內扮演著重要角色,可說是一種與生命現象息息相關的重要化合物。 膽固醇廣泛存在於動物體的細胞膜中,同時也是合成幾種重要荷爾蒙及膽酸(膽汁的重要成分)的材料。若血液中膽固醇的總含量過高,則發生心血管疾病的機率會提高。.

新!!: 淀粉和膽固醇 · 查看更多 »

膽石症

膽結石(gallstones)是在膽囊內由膽汁化合物組成的结石。膽石症(choleliths)可以指膽囊中的結石,也可以指此一疾病。大多數膽結石患者(約80%)不曾有過症狀。膽結石的患者中,有1-4%每年發生腹部右上方痙攣疼痛,稱為,膽結石併發症包含,胰腺炎和肝炎。這些併發症可能導致持續超過五小時的疼痛、發燒、黄疸、嘔吐或尿液呈現茶色等症狀。。 膽結石的危險因子包括避孕藥,懷孕,膽結石家族史,肥胖症,糖尿病,或快速減肥。膽結石在膽囊形成,通常來自膽固醇或膽紅素。由症狀可推論可能罹患膽結石,然後使用超音波確診,併發症也可從血液檢查中發現。 預防膽結石的方式有保持健康體重、高纖飲食和降低單醣的攝取。當有病徵才需要治療。治療方式一般建議,可以由或由單個較大的切口完成。手術通常在下完成。無法進行手術的人,會嘗試用藥物來溶解石塊或。 已開發國家中,10-15%的成年人患有膽結石,然而,非洲許多地區的發生率低至3%。2013年膽囊和膽道相關疾病盛行人數約1.04億人(1.6%),造成106,000人死亡。女性比男性常出現膽結石的情形,而且在40歲以後更常見。種族也影響了膽結石發生率,例如,48%的美國印第安人有膽結石病人在執行膽囊切除手術後,一般而言結果都很好。.

新!!: 淀粉和膽石症 · 查看更多 »

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

新!!: 淀粉和配合物 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 淀粉和酶 · 查看更多 »

老普林尼

蓋乌斯·普林尼·塞孔杜斯(Gaius Plinius Secundus,),常稱为老普林尼或大普林尼,古羅馬作家、博物学者、军人、政治家,以《自然史》(一译《博物志》)一書留名後世。其外甥为小普林尼。 老普林尼是罗马骑士与元老院议员加伊乌斯·凯奇利乌斯的外孫。他出生在科莫,而非訛傳的维罗纳。学过法律,任西班牙代理总督,后担任那不勒斯舰队司令。老普林尼在观察维苏威火山爆发时,不幸被火山噴出的毒氣毒死。 其一生著有7部著作,其中六本散失,僅剩片段。。.

新!!: 淀粉和老普林尼 · 查看更多 »

植物

植物(Plantae)是生命的主要形態之一,並包含了如乔木、灌木、藤類、青草、蕨類及綠藻等熟悉的生物。種子植物、苔蘚植物、蕨類植物和擬蕨類等植物,據估計現存大約有350000個物種。直至2004年,其中的287655個物種已被確認,有258650種開花植物15000種苔蘚植物(参见条目中表格)。綠色植物大部份的能源是經由光合作用從太陽光中得到的。.

新!!: 淀粉和植物 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 淀粉和氢 · 查看更多 »

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

新!!: 淀粉和氢键 · 查看更多 »

氧化亚铜

氧化亞銅是一价銅的氧化物,分子式為Cu2O,紅色至紅褐色結晶或粉末。它不溶於水及有機溶劑,但可溶於稀鹽酸、稀硫酸、氯化銨溶液。溶於濃氨溶液形成無色配合物Cu(NH3)2+,其在空氣中被氧化為藍色的2+。氧化亞銅在1800℃分解成銅和氧,其在乾燥空氣中穩定,但在潮濕空氣中被慢慢氧化為氧化銅。 氧化亞銅可溶於鹽酸生成HCuCl2(氯化亞銅的配合物),也可溶於硫酸及硝酸分別形成硫酸銅及硝酸銅。.

新!!: 淀粉和氧化亚铜 · 查看更多 »

木薯

木薯(學名:Manihot esculenta),又称树薯,是一種大戟科木薯属植物,原產於南美洲 。.

新!!: 淀粉和木薯 · 查看更多 »

斐林试剂

斐林试剂(Fehling's reagent),也称斐林试液、菲林试剂,是一个常用的分析化学试剂。西元1849年由德國化學家赫爾曼·馮·斐林(Hermann von Fehling)制作出來。斐林試劑可以用來區分水溶性的醛及酮官能基,也可以用來測定單醣。.

新!!: 淀粉和斐林试剂 · 查看更多 »

支链淀粉

支链淀粉(Amylopectin)又称胶淀粉、淀粉精,是天然淀粉的两种主要高分子化合物之一,另一种为直链淀粉。普通淀粉颗粒内,支链淀粉约占80%,直链淀粉约占20%。 从结构上来讲,支链淀粉是一个具有树枝形分支结构的多糖。相对分子质量较大,一般由1000-300,000个左右葡萄糖单位组成,分子量约为100万,有些可达600万。D-吡喃葡萄糖单位通过α-1,4-苷键连接成一直链,此直链上又可通过α-1,6-苷键形成侧链,在侧链上又会出现另一个分支侧链。主链中每隔6-9个葡萄糖残基就有一个分支,每一个支链平均含有约15-18个葡萄糖残基,平均每24-30个葡萄糖残基中就有一个非还原尾基。因此支链淀粉的结构为高支化聚合物,十分复杂。 支链淀粉可溶于水,与碘作用产生红紫色。支链淀粉加热糊化后,分子中的链较为松散,因此具有较高的粘度。当淀粉糊冷却时,支链淀粉分子中的分支结构又减弱了分子链重新结合的紧密程度,表现出较好的抗老化能力。但支链淀粉耐剪切的稳定性较差,在剪切力作用下淀粉链被破坏,表现为粘度下降,保水力减弱。 支链淀粉在甲基化、水解后,端基的葡萄糖变为2,3,4,6-四-O-甲基-D-葡萄糖,链中非分支点的葡萄糖残基变为2,3,6-三-O-甲基-D-葡萄糖,而链分支点的葡萄糖残基则变为2,3-二-O-甲基-D-葡萄糖。 动物体内贮存的糖原相当于植物体内的淀粉,因此也称为动物淀粉。糖原的结构与支链淀粉较为相似,但树枝形的分支更多。支链淀粉一般是每隔24~30个葡萄糖才有一个分支,糖原的支链多大约8~12个葡萄糖就有一个分支。.

新!!: 淀粉和支链淀粉 · 查看更多 »

重定向到这里:

澱粉澱粉質

传出传入
嘿!我们在Facebook上吧! »