我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

昴宿增九

指数 昴宿增九

昴宿增九,即金牛座16(16 Tau,16 Tauri)是一颗位于金牛座的恒星,它是昴宿星团的成员,距离地球约430光年。.

目录

  1. 25 关系: 太阳半径希腊神话二十八宿仪象考成依巴谷星表刻莱诺光年美國海軍美国热力学温标视星等阿特拉斯金牛座HD星表恒星恒星光谱提坦次巨星消光昴 (星官)昴宿昴宿一昴宿星團普勒俄涅普勒阿得斯

  2. 昴宿星團

太阳半径

太陽半徑是天文學中的長度單位,使用目前太陽的半徑為基準來表示恆星大小: 太陽的半徑大約是695,500 公里(432,450英里)或大約地球半徑的110倍,或是木星平均半徑的10倍。 由於自轉的緣故,從極點至赤道的半徑有些微的差異,它的扁率約為十萬分之一。 在2003年和2006年,SOHO太空船利用水星從太陽表面的前方經過的水星凌日時間測量太陽的半徑。測量太陽半徑的結果是。.

查看 昴宿增九和太阳半径

希腊神话

希臘神話(希腊语:ἡ Ἑλληνικὴ Μυθολογία)即口頭或文字上一切有關古希臘人的神、英雄、自然和宇宙歷史的神話。希臘神話是古希臘宗教的組成部分之一。現代的學者更傾向於研究神話,因為其實際上反映了古希臘的宗教和政治制度、文明以及這些神話產生的本質原因。一些神學家甚至認為古希臘人創造這些神話是為了解釋他們所遇到所有的事件。 希臘神話涵及大量傳說故事,其中很多都通過希臘藝術品來表現,比如古希臘的陶器繪畫和浮雕藝術。這些傳說意在解釋世界的本源和講述眾神和英雄們的生活和冒險以及對當時的生物的特殊看法。這些神話開始於口耳相傳,今日所知的希臘神話或傳說大多來源於古希臘文學。已知的最早的古希臘文學作品有荷馬的敘事史詩《伊利亞特》和《奧德賽》,著重描寫了和特洛伊戰爭相關的重大事件。基本上和荷馬是同時期的赫西俄德的兩部詩歌《神譜》和《工作與時日》包含了當時的學者對世界起源、神權統治和人類時代的延續以及人類疾苦和祭祀活動的起源的看法和認識。除了《荷馬史詩》之外,還可以從《》(抒情詩,公元前5世紀的悲劇作品)、希臘化時期的學術作品和詩歌以及羅馬帝國時期的作品,如普魯塔克和保薩尼亞斯的作品中發現希臘神話的踪跡。 現在希臘神話已經從很多藝術品上關於眾神和英雄故事的裝飾得到考古學上證明。公元前8世紀的陶器上的幾何設計鮮明地記錄特洛伊圍城的場景和赫拉克勒斯的冒險。在隨後的古風時期、古典希臘時期以及希臘化時期,大量得到了文學上的證據證明神話場景不斷湧現。 希臘神話對西方文化、藝術、文學和語言有著明顯而深遠的影響。從古希臘時期到現代,詩人和藝術家很多都從希臘神話中獲得靈感,並為其賦予現代意義。.

查看 昴宿增九和希腊神话

二十八宿

right 二十八宿(),又称二十八舍或二十八星,是古代中国将黄道和天赤道附近的天区划分为二十八个区域。.

查看 昴宿增九和二十八宿

仪象考成

《仪象考成》是古代中国一部以星表为主的工具书,由清朝钦天监与传教士、、学者何国宗、明安图等人编修。从乾隆九年(1744年)开始编修,直至乾隆十七年(1752年)完成。全书共32卷,前两卷介绍天文仪器玑衡抚辰仪的使用方法,后30卷为星表,共收录星3083颗。 《仪象考成》的很多恒星的数据是根据弗兰斯蒂德的星表编算的。在弗兰斯蒂德的星表中记录的恒星,大都也能在《仪象考成》中找到对应位置。.

查看 昴宿增九和仪象考成

依巴谷星表

依巴谷星表和第谷星表(Tycho-1)是歐洲太空總署的依巴谷衛星成果的主要產物。這顆衛星在1989年11月至1993的3月的四年任務中,傳回了許多高精度的科學數據。 依巴谷星表至少列出了118,000顆天體測量學上精確度在千分之一弧秒恆星,而第谷星表 列出的則略微超過1,050,000顆恆星。 這份星表包含很大數量的高精密度天體位置和測光數據。另外伴生的附錄是變星、雙星和聚星的特性數據,和太陽系的天文測量和測光數據。主要的部分提供了可以印製和以機器閱讀的版本。 全球性的數據分析,需要處理1,000兆比特未經加工的衛星原始數據,這是一件複雜且需要漫長時間的工作,由NDAC和先進科學和技術基金會承擔,共同製做出依巴谷目錄。第四個參與合作的科學機構是INCA,負責撰寫依巴谷衛星的觀測程式和編譯成最佳化的數據選擇,在發射前就先安置在衛星的輸出目錄中。依巴谷和第谷星表的成果使歐洲太空總署等四個團體的繁雜工作得到形式上的正式結束。.

查看 昴宿增九和依巴谷星表

刻莱诺

刻莱诺(Κελαινώ、Celaeno)是希腊神话中登场的数人女性的名字。名字的希腊语意思为“昏暗”或“黑色”。因此,刻莱诺可以是指:.

查看 昴宿增九和刻莱诺

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

查看 昴宿增九和光年

美國海軍

美國海軍(United States Navy,縮寫:USN或U.S. Navy),是美利坚合众国軍隊的一个軍種,負責管理所有与海軍有关的事务。其职责为:“配备、训练和武装一支有能力赢得战争、阻止入侵和保证海域自由的海军战斗部队。”美国海军除了目前有近500,000现役和预备役海軍军人、278艘现役大小军舰之外,海軍旗下甚至還有美國空軍以外的另一支空中部隊,多數為舰載飞机,數量達逾4,000架.

查看 昴宿增九和美國海軍

美国

美利堅合眾國(United States of America,簡稱为 United States、America、The States,縮寫为 U.S.A.、U.S.),通稱美國,是由其下轄50个州、華盛頓哥倫比亞特區、五个自治领土及外岛共同組成的聯邦共和国。美國本土48州和联邦特区位於北美洲中部,東臨大西洋,西臨太平洋,北面是加拿大,南部和墨西哥及墨西哥灣接壤,本土位於溫帶、副熱帶地區。阿拉斯加州位於北美大陸西北方,東部為加拿大,西隔白令海峽和俄羅斯相望;夏威夷州則是太平洋中部的群島。美國在加勒比海和太平洋還擁有多處境外領土和島嶼地區。此外,美國还在全球140多個國家和地區擁有着374個海外軍事基地。 美国拥有982萬平方公里国土面积,位居世界第三(依陆地面積定義为第四大国);同时拥有接近超过3.3億人口,為世界第三人口大国。因为有着來自世界各地的大量移民,它是世界上民族和文化最多元的國家之一Adams, J.Q.; Strother-Adams, Pearlie (2001).

查看 昴宿增九和美国

热力学温标

热力学温标,又称开尔文温标、绝对温标,简称开氏溫標,凱氏溫標,是一种标定、量化温度的方法。它对应的物理量是热力学温度,或称开氏度,符号为K,为国际单位制中的基本物理量之一;对应的单位是开尔文,符号为K。热力学温标是由威廉·汤姆森,第一代开尔文男爵于1848年利用热力学第二定律的推论卡诺定理引入的。它是一个纯理论上的温标,因为它与测温物质的属性无关。 热力学温度又被称为绝对温度,是热力学和统计物理中的重要参数之一。一般所说的绝对零度指的便是0 K,对应-273.15°C。.

查看 昴宿增九和热力学温标

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

查看 昴宿增九和视星等

阿特拉斯

Nordisk familjebok''所繪的阿特拉斯 阿特拉斯或译亚特拉斯(希腊语:Άτλας,Atlas)是希腊神话裡的擎天神,属于泰坦神族,被宙斯降罪来用双肩支撑苍天。他的父親是泰坦神伊阿珀托斯,母親是俄刻阿尼得斯之一的亞細亞(Asia)或克呂墨涅(Clymene)。他的兒女包括赫斯珀里得斯,普勒阿得斯,許阿得斯,還有被困在奧吉吉亞島上的卡呂普索。 大西洋和亞特蘭提斯的語源都和阿特拉斯有關,前者的意思是「阿特拉斯之海」,後者的意思則是「阿特拉斯之島」。.

查看 昴宿增九和阿特拉斯

金牛座

金牛座(Taurus,天文符号:♉)黃道帶星座之一,面积797.25平方度,占全天面积的1.933%,在全天88个星座中,面积排行第十七。金牛座中亮于5.5等的恒星有98颗,最亮星为毕宿五(金牛座α),视星等为0.85。每年11月30日子夜金牛座中心经过上中天。 人类发现的第一颗小行星谷神星就是1801年元旦之夜由意大利天文学家皮亚齐在金牛座天区发现的。.

查看 昴宿增九和金牛座

HD星表

HD星表(The Henry Draper Catalogue,缩写为HD,亨利·德雷伯星表)是哈佛大学天文台编纂的世界上第一个收录恒星光谱的大型星表,首版在1918年至1924年间出版,它给出了225,300颗恒星的光谱分类,涵盖了全天最暗达到照相星等为9等的恒星(大部分是北天的恒星),历元为1900.0。最初的HD星表包含的星主要是亮于9等的星,随后的增版增加了在某些天区的暗星。, HyperSky documentation, Willmann-Bell, Inc., 1996.

查看 昴宿增九和HD星表

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

查看 昴宿增九和恒星

恒星光谱

在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.

查看 昴宿增九和恒星光谱

提坦

泰坦(Τιτάν,读音为;通俗文化中经常使用源于英語音譯的“泰--坦”或「提--坦」)希腊神话中一组神的统称。按照经典的神话系统,泰坦在被奥林帕斯神系取代之前曾经统治世界。.

查看 昴宿增九和提坦

次巨星

次巨星 次巨星是有著與正常主序星(矮星)相同的光譜類型,但比較明亮,卻又不如巨星明亮的恆星。次巨星這個名詞適用於恆星演化的一個階段,是一個光譜的特定光度分類。.

查看 昴宿增九和次巨星

消光

消光(Extinction)是天文學中觀測者用來描述被觀測的天體發射的光線被路途中的物質(氣體和塵埃)吸收和散射的狀態。對地面的觀測者而言,消光來自於星際物質(ISM)和地球大氣層,他也可能來自於被觀測天體周圍的星周塵。大氣層的消光在一些波段(X射線、紫外線和紅外線)上非常強烈,必須進入太空才能觀測。在可見光的波段上,藍色遠比紅色被稀釋的強烈,結果是天體會比預期的偏紅,星際消光也會使天體紅化 (不要與紅移混淆)。.

查看 昴宿增九和消光

昴 (星官)

昴是中国古代星官之一,属于二十八宿的昴宿,位于现代星座划分的金牛座,含有恒星7颗。 在清代的星表《仪象考成》及《仪象考成续编》,昴新增13星。.

查看 昴宿增九和昴 (星官)

昴宿

昴宿(),昴日雞,二十八宿之一,西方七宿第四宿。.

查看 昴宿增九和昴宿

昴宿一

昴宿一,即金牛座17(17 Tau,17 Tauri)是一颗位于金牛座的蓝白色巨星,它是昴宿星团最亮的九颗恒星之一,距离地球约370光年。.

查看 昴宿增九和昴宿一

昴宿星團

昴宿星團,简称昴星团,又称七姊妹星團,梅西爾星雲星團表編號M45,是一個大而明亮的疏散星团,位于金牛座,裸眼就可以輕易的看見,肉眼通常見到有九颗亮星。昴星团的视直径约2°,形成斗狀。成员星数在200个以上,是一个很年轻的星团。昴星团也是一个移动星团。 昴宿星團的雲氣是最接近地球的星雲之一,並且可能是最著名的。它有時被稱為瑪亚女神的星雲,這種錯誤或許是因為反射星光的雲氣本質上是環繞在邁亞的四周所造成的(參見下文)。 這群以藍色高溫恆星為主的星團是在最近的一億年形成的,由微量的灰塵形成的反射星雲圍繞在最亮星的附近,起初被認為是星團形成時留下的,但是現在知道只是目前正在經過,與星團無關的塵埃雲。天文學家估計這個星團大約可以再存在二億五千萬年,之後就會被銀河系的引力扯碎,散佈在鄰近的星空之中。.

查看 昴宿增九和昴宿星團

普勒俄涅

普勒俄涅(希臘語:Πληιόνη,後為Πλειόνη;)是三千位俄刻阿尼得斯寧芙女神的其中之一。根據奧維德的紀年表(《Fasti》),她是俄刻阿诺斯及忒提斯的女兒。她住於希臘南部的阿耳卡狄亚的基利尼山(Mount Kyllini;又作庫勒涅山,Mount Cyllene)。她嫁予阿特拉斯,並誕下、許阿斯、卡呂普索、許阿得斯七姊妹及普勒阿得斯七姊妹。.

查看 昴宿增九和普勒俄涅

普勒阿得斯

普勒阿得斯(古希腊语:Πλειάδες, Pleïades)希腊神话中提坦神阿特拉斯和大洋神女普勒俄涅所生的七个女儿的统称。她们代表天上的昴星团(「七姊妹」),是阿耳忒弥斯的伴神。普勒阿得斯七姊妹从最年长到最年幼,她们的名字依次分别为:迈亚、厄勒克特拉、塔宇革忒、阿尔库俄涅、刻莱诺、斯忒洛珀和墨洛珀。她们与许阿得斯、赫斯珀里得斯以及卡吕普索为同父异母的姐妹关系,一起并称为阿特兰提得斯(Atlantides)。曾经普勒阿得斯与她们这些同父异母的姊妹们以倪塞伊得斯之名养育过年幼的狄俄倪索斯。.

查看 昴宿增九和普勒阿得斯

另见

昴宿星團

亦称为 金牛座16。