徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

形式幂级数

指数 形式幂级数

形式幂级数是一个数学中的抽象概念,是从幂级数中抽离出来的代数对象。形式幂级数和从多项式中剥离出来的多项式环类似,不过允许(可数)无穷多项因子相加,但不像幂级数一般要求研究是否收敛和是否有确定的取值。形式幂级数在代数和组合理论中有广泛应用。.

22 关系: 卷积同态多項式完备空间尼古拉·布尔巴基幂级数度量空间代数环 (代数)理想积空间级数点集拓扑学階乘P進數X柯西乘积极限无穷收敛半径数学拓扑

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

新!!: 形式幂级数和卷积 · 查看更多 »

同态

抽象代数中,同态是两个代数结构(例如群、环、或者向量空间)之间的保持结构不变的映射。英文的同态(homomorphism)来自希腊语:ὁμός (homos)表示"相同"而μορφή (morphe)表示"形态"。注意相似的词根ὅμοιος (homoios)表示"相似"出现在另一个数学概念同胚的英文(homeomorphism)中。.

新!!: 形式幂级数和同态 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 形式幂级数和多項式 · 查看更多 »

完备空间

完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.

新!!: 形式幂级数和完备空间 · 查看更多 »

尼古拉·布尔巴基

尼古拉·布尔巴基(Nicolas Bourbaki,法語發音)是20世纪一群法国数学家的笔名。他們由1935年開始撰寫一系列述說對現代高等數學探研所得的書籍。以把整個數學建基於集合论為目的,在過程中,布尔巴基致力於做到最極端的嚴謹和泛化,建立了些新術語和概念。 布尔巴基是个虚构的人物,布尔巴基团体的正式称呼是“尼古拉·布尔巴基合作者协会”,在巴黎的高等师范学校设有办公室。.

新!!: 形式幂级数和尼古拉·布尔巴基 · 查看更多 »

幂级数

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.

新!!: 形式幂级数和幂级数 · 查看更多 »

度量空间

在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.

新!!: 形式幂级数和度量空间 · 查看更多 »

代数

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.

新!!: 形式幂级数和代数 · 查看更多 »

环 (代数)

环(Ring)是由集合R和定义于其上的两种二元运算(记作+和·,常被简称为加法和乘法,但与一般所说的加法和乘法不同)所构成的,符合一些性质(具体见下)的代数结构。 环的定義类似于交换群,只不过在原来「+」的基础上又增添另一种运算「·」(注意我们这里所说的 + 與 · 一般不是我们所熟知的四则运算加法和乘法)。在抽象代数中,研究环的分支为环论。.

新!!: 形式幂级数和环 (代数) · 查看更多 »

理想

想可以指:.

新!!: 形式幂级数和理想 · 查看更多 »

积空间

拓扑学和数学的相关领域中,积空间是指一族拓扑空间的笛卡儿积,并配备了一个称为积拓扑的自然的拓扑结构。.

新!!: 形式幂级数和积空间 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 形式幂级数和级数 · 查看更多 »

点集拓扑学

点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学结构的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。.

新!!: 形式幂级数和点集拓扑学 · 查看更多 »

階乘

一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.

新!!: 形式幂级数和階乘 · 查看更多 »

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

新!!: 形式幂级数和P進數 · 查看更多 »

X

X, x (英文:ex;中文音译:亞克斯)是拉丁字母中的第24个字母。在北约音标字母中使用X-Ray来表示X。 /ks/音在古代的西部希腊语中用“Χ”(Chi)字母来表示;而在古代的东部希腊语中用“Ξ”(Xi)字母来表示,“Χ”(Chi)字母只表示/x/。 结果,现代希腊语采用了东方式的写法,但西方式的写法却传入了意大利半岛的伊特鲁里亚。因此它在伊特鲁里亚语中表示/ks/,在拉丁语中表示/ks/和/gs/;相反的,源自东希腊语的斯拉夫字母却继承了东希腊语的读法,以致现时东方的阿塞拜疆语,乌兹别克语、鞑靼语、维吾尔语都把X来标记/x/音。不过,有学者表明拉丁字母的X并不等同于希腊字母Χ。葡萄牙语中x表示。 但是对于字母Ψ (Psi),Χ (Chi, Khi) 和 Ξ (Xi) 是来源于希腊语还是闪族语则仍有争论。.

新!!: 形式幂级数和X · 查看更多 »

柯西乘积

在数学上,以法国数学家奧古斯丁·路易·柯西命名的柯西乘积,是指两组数列a_n, b_n的离散卷积。 该数列乘积被认为是自然数R的半群环的元素。.

新!!: 形式幂级数和柯西乘积 · 查看更多 »

极限

极限可以指:.

新!!: 形式幂级数和极限 · 查看更多 »

无穷

無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.

新!!: 形式幂级数和无穷 · 查看更多 »

收敛半径

收敛半径是数学中与幂级数有关的概念。一个幂级数的收敛半径是一个非负的扩展实数(包括无穷大)。收敛半径表示幂级数收敛的范围。在收敛半径内的紧集上,幂级数对应的函数一致收敛,并且幂级数就是此函数展开得到的泰勒级数。但是在收敛半径上幂级数的敛散性是不确定的。.

新!!: 形式幂级数和收敛半径 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 形式幂级数和数学 · 查看更多 »

拓扑

拓扑有以下領域的意義與應用:.

新!!: 形式幂级数和拓扑 · 查看更多 »

重定向到这里:

形式幂級數形式冪級數

传出传入
嘿!我们在Facebook上吧! »