目录
岩泽健吉
岩泽健吉(日语:岩澤 健吉,いわさわ けんきち,Iwasawa Kenkichi,),日本数学家,以在代数数论领域的影响而著名。.
查看 岩泽分解和岩泽健吉
中心
中心可以指:.
查看 岩泽分解和中心
三角矩阵
在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。.
查看 岩泽分解和三角矩阵
維度
维度,又稱维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。 0维是一點,沒有長度。1维是線,只有長度。2维是一個平面,是由長度和寬度(或曲線)形成面積。3维是2维加上高度形成「體積面」。雖然在一般人中習慣了整數维,但在碎形中維度不一定是整數,可能会是一个非整的有理数或者无理数。 我们周围的空间有3个维(上下、前后、左右)。我們可以往上下、東南西北移動,其他方向的移動只需用3個三维空間軸來表示。向下移就等於負方向地向上移,向西北移就只是向西和向北移的混合。 在物理學上時間是第四维,與三個空間维不同的是,它只有一個,且只能往一方向前進。 我们所居於的时空有四个维(3个空间轴和1个时间轴),根據愛因斯坦的概念稱為四维时空,我們的宇宙是由時间和空间構成,而這條時間軸是一條虛數值的軸。 弦理論認為我們所居於的宇宙實際上有更多的維度(通常10、11或24個)。但是這些附加的维度所量度的是次原子大小的宇宙。 维度是理论模型,在非古典物理学中这点更为明显。所以不用计较宇宙的维数是多少,只要方便描述就行了。 在物理學中,質的量纲通常以質的基本單位表示:例如,速率的量纲就是長度除以時間。.
查看 岩泽分解和維度
複化
數學中,實數域上的向量空間V的複化是在複數域上對應的向量空間VC,就是說它有與V相同的維數,V在實數域上的基可以作為VC在複數域上的基。 例如設V包含m×n實矩陣,則VC包含m×n複矩陣。 不依賴於基的定義是取V和複數在實域上的張量積: 複向量空間V^C有額外結構:典範複共軛運算\phi\ 。因為V以v\mapsto v\otimes 1包含在V^C內,複共軛運算可定義為\phi(v\otimes z).
查看 岩泽分解和複化
极大紧子群
数学中,一个拓扑群 G 的极大紧子群 K 是一个在子空间拓扑下是紧空间的子群,且是这些子群中的极大元。 一个一般李群不一定有极大紧子群,但半单李群却一定存在,而且他们在理论中有重要地位。极大紧子群一般不是惟一的,但在相差一个共轭的意义下是惟一的——他们是本质惟一的。.
查看 岩泽分解和极大紧子群
李代數
数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.
查看 岩泽分解和李代數
格拉姆-施密特正交化
在线性代数中,如果内积空间上的一组向量能够组成一个子空间,那么这一组向量就称为这个子空间的一个基。Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上的一个基得--子空间的一个正交基,并可进一步求出对应的标准正交基。 这种正交化方法以和命名,然而比他们更早的拉普拉斯(Laplace)和柯西(Cauchy)已经发现了这一方法。在李群分解中,这种方法被推广为岩泽分解(Iwasawa decomposition)。 在数值计算中,Gram-Schmidt正交化是数值不稳定的,计算中累积的舍入误差会使最终结果的正交性变得很差。因此在实际应用中通常使用豪斯霍尔德变换或Givens旋转进行正交化。.
正交矩阵
在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.
查看 岩泽分解和正交矩阵
日本
日本國(),是位於東亞的島嶼國家,由日本列島、琉球群島和伊豆-小笠原群島等6,852個島嶼組成,面積約37.8万平方公里。國土全境被太平洋及其緣海環抱,西鄰朝鮮半島及俄罗斯,北面堪察加半島,西南為臺灣及中國東部。人口達1.26億,居於世界各國第11位,當中逾3,500萬以上的人口居住於東京都與周邊數縣構成的首都圈,為世界最大的都市圈。政體施行議會制君主立憲制,君主天皇為日本國家與國民的象徵,實際的政治權力則由國會(參眾兩院)、以及內閣總理大臣(首相)所領導的內閣掌理,最高法院為最高裁判所。 傳說日本於公元前660年2月11日,由天照大神之孫下凡所生之後代磐余彥尊所建,在公元4世紀出現首個統一政權,並於大化改新中確立了天皇的中央集权體制。至平安時代結束前,日本透過文字、宗教、藝術、政治制度等從漢文化引進的事物,開始衍生出今日為人所知的文化基礎。12世紀後的六百年間,日本由武家階級建立的幕府實際掌權。17世纪起江户幕府頒布锁国令,至1854年被迫開港才結束。此後,日本在西方列強進逼的時局下,首先天皇從幕府手中收回統治權,接著在19世紀中期的明治维新進行大規模政治與經濟改革,實現工業化及現代化;而自19世纪末起,日本首先兼併琉球,再拿下台灣、朝鮮、樺太等地為屬地。進入20世紀時,日本已成為當時世界的帝國主義強權之一,也是當時東方世界唯一的大國。日本後來成為第二次世界大戰的軸心國之一,對中國與南洋發動全面侵略,但最终於1945年戰敗投降。日本投降至1952年《旧金山和约》生效前,同盟国军事占领日本,並監督日本制定新憲法、建立今日所見的政治架構,日本轉型為以國會為中心的民主政體,天皇地位虛位化,並依照憲法第九條放棄維持武装以及宣戰權。而日本雖在法律上實施非武裝化,出於自我防衛上的需要,仍擁有功能等同於其他國家軍隊的自衛隊。 日本是世界第三大經濟體,亦為七大工業國組織成員,是世界先進國家之一,主要奠基於日本經濟在二戰後的巨幅增長。現時日本的科研能力、工業基礎和製造業技術均位居世界前茅,並是世界第四大出口國和進口國。2015年,日本的人均國內生產總值依國際匯率可兌換成為三萬二千,人均國民收入則在三萬七千美元左右,人類發展指數亦一直維持在極高水平。.
查看 岩泽分解和日本
数学家
数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.
查看 岩泽分解和数学家