目录
可测函数
可测函数是可测空间之间的保持(可測集合)結構的函数,也是勒貝格積分或實分析中主要討論的函數。数学分析中的不可测函数一般视为病态的。 如果Σ是集合X上的σ代数,Τ是Y上的σ代数,则函数f: X → Y是Σ/Τ可测的,如果Τ内的所有集合的原像都在Σ内。 根据惯例,如果Y是某个拓扑空间,例如实数空间\mathbb,或复数空间\mathbb,则我们通常使用Y上的开集所生成的波莱尔σ代数,除非另外说明。在这种情况下,可测空间(X,&Sigma)又称为波莱尔空间。 如果从上下文很清楚Τ和Σ是什么,则函数f可以称为Σ可测的,或干脆称为可测的。.
查看 局部可积函数和可测函数
定义域
定义域(Domain),是函数自变量所有可取值的集合。给定函数f:A\rightarrow B,其中A被称为是f的定义域,记作D_。f映射到陪域中的所有值的集合称为f的值域,记作f(A)或R_。 例如,函数f(x).
查看 局部可积函数和定义域
广义函数
数学上,广义函数或是分布是将函数的概念一般化得到的对象。得到承认的理论不止一种。广义函数在使得不连续函数表现得更像光滑函数的方面很有用,并且(在极限情况下)可以表述像点电荷这类的物理现象。它们广泛应用于物理和工程领域。 有些方法的一个共同之处在于它们是基于日常数值函数的算子方面的。其早期历史和算子微积分的一些思想有联系,而更为近代的发展和佐藤幹夫称为代数分析的特定方向的一些思想有密切关联。偏微分方程和群表示理论的技术要求曾对该主题有重要影响。.
查看 局部可积函数和广义函数
开集
開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).
查看 局部可积函数和开集
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
查看 局部可积函数和当且仅当
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 局部可积函数和函数
勒贝格测度
数学上,勒贝格测度是赋予欧几里得空间的子集一个长度、面积、或者体积的标准方法。它广泛应用于实分析,特别是用于定义勒贝格积分。可以赋予一个体积的集合被称为勒贝格可测;勒贝格可测集A的体积或者说测度记作λ(A)。一个值为∞的勒贝格测度是可能的,但是即使如此,在假设选择公理成立时,Rn的所有子集也不都是勒贝格可测的。不可测集的“奇特”行为导致了巴拿赫-塔斯基悖论这样的命题,它是选择公理的一个结果。.
查看 局部可积函数和勒贝格测度
积分
积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.
查看 局部可积函数和积分
紧空间
在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.
查看 局部可积函数和紧空间
连续函数
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.
查看 局部可积函数和连续函数
Lp空间
在数学中,Lp空间是由p次可积函数组成的空间;对应的ℓp空间是由p次可和序列组成的空间。它們有時叫做勒貝格空間,以昂利·勒貝格命名,儘管依據它們是首先介入。在泛函分析和拓扑向量空间中,他们构成了巴拿赫空间一类重要的例子。 Lp空间在工程学领域的有限元分析中有应用。.
查看 局部可积函数和Lp空间
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 局部可积函数和数学
另见
各类函数
- 代數函數
- 传递函数
- 偽解析函數
- 准周期函数
- 凸函数
- 凹函数
- 初等函数
- 单射
- 单调函数
- 双射
- 反线性映射
- 可忽略函数
- 可测函数
- 周期函数
- 埃爾米特函數
- 奇函數與偶函數
- 局部可积函数
- 弱可测函数
- 恆等函數
- 指示函数
- 支撑函数
- 有界函数
- 权重
- 概周期函数
- 次可加性
- 次调和函数
- 正交函数
- 正定函數
- 泛函
- 满射
- 真凸函数
- 窗函数
- 简单函数
- 處處不連續函數
- 超越函數
- 连续函数
- 齐次函数
测度论
- Σ-代数
- Dice系数
- Lp空间
- 保测动力系统
- 克拉克森不等式
- 勒貝格積分
- 可加性
- 可测函数
- 可测空间
- 史密斯-沃尔泰拉-康托尔集
- 局部可积函数
- 巴拿赫-塔斯基定理
- 幾乎處處
- 康托尔函数
- 康托尔集
- 弱可测函数
- 循序可测过程
- 指示函数
- 有界变差
- 本质上确界和本质下确界
- 权重
- 正數
- 测度
- 测度收敛
- 狄拉克δ函数
- 简单函数
- 維塔利覆蓋引理
- 绝对连续
- 维塔利集合
- 维纳空间
- 逐點收斂
- 闵可夫斯基不等式