徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

密度泛函理論

指数 密度泛函理論

密度泛函理论 (Density functional theory (DFT))是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。.

20 关系: 半导体多体问题局域密度近似库仑定律分子间作用力哈特里-福克方程凝聚态物理学固体物理学科恩科恩-沈吕九方程计算化学范德华力能隙能量薛定谔方程量子力学量子化学波函数泛函斯莱特行列式

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 密度泛函理論和半导体 · 查看更多 »

多体问题

多體問題為一大類物理問題的通稱。那些問題與大量粒子構成的微觀系統有關,且粒子之間有交互作用。要精確描述這些微觀系統,將會用到量子力學。三體以上的系統即被視為多體系統,不過因為三體和四體可以用特定的方法處理,有時會被歸類為。在這樣的量子系統中,粒子之間不斷交互作用,產生量子相關性以及纏結。因此,系統的波函數很複雜,並含有大量資訊,常常無法進行精確或可分析的計算。所以,多體理論物理學常常必須依賴針對問題的一組近似,並且是最多計算的科學領域之一。.

新!!: 密度泛函理論和多体问题 · 查看更多 »

局域密度近似

局域密度近似(local-density approximation, LDA)是密度泛函理论的其中一类交换相关能量泛函中使用的近似。该近似认为交换相关能量泛函仅仅与电子密度在空间各点的取值有关(而与其梯度、拉普拉斯等无关)。尽管有多种方法都能体现局域密度近似,但在实际中最成功的是基于模型的泛函。下面的讨论,除非特别说明,仅限于这一类泛函。 一般地,对于非自旋极化的体系,局域密度近似的交换相关泛函可以写作: E_^.

新!!: 密度泛函理論和局域密度近似 · 查看更多 »

库仑定律

库仑定律(Coulomb's law),法国物理学家查尔斯·库仑於1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。庫侖定律闡明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。.

新!!: 密度泛函理論和库仑定律 · 查看更多 »

分子间作用力

分子间作用力(Intermolecular force),亦稱分子間引力,指存在于分子与分子之间或高分子化合物分子内官能基之间的作用力,简称分子间力。它主要包括:.

新!!: 密度泛函理論和分子间作用力 · 查看更多 »

哈特里-福克方程

哈特里-福克方程(Hartree–Fock equation),又称为HF方程,是一个应用变分法计算波函数的方程式,是量子物理、凝聚態物理學、量子化学中最重要的方程之一。HF方程形式上是单电子本征方程,求得的本征态是单电子波函数,即分子轨道。以HF方程为核心的数值计算方法称为“哈特里-福克方法”(Hartree–Fock method)。 基于分子轨道理论的所有量子化学计算方法都是以HF方法为基础的。鉴于分子轨道理论在现代量子化学中的广泛应用,HF方程被视为现代量子化学的基石。.

新!!: 密度泛函理論和哈特里-福克方程 · 查看更多 »

凝聚态物理学

凝聚态物理学專門研究物质凝聚相的物理性质。该领域的研究者力图通过物理学定律来解释凝聚相物质的行为。其中,量子力学、电磁学以及统计力学的相关定律对于该领域尤为重要。 固相以及液相是人们最为熟悉的凝聚相。除了这两种相之外,凝聚相还包括一些特定的物质在低温条件下的超导相、自旋有关的铁磁相及反铁磁相、超低温原子系统的玻色-爱因斯坦凝聚相等等。对于凝聚态的研究包括通过实验手段测定物质的各种性质,以及利用理论方法发展数学模型以深入理解这些物质的物理行为。 由于尚有大量的系统及现象亟待研究,凝聚态物理学成为了目前物理学最为活跃的领域之一。仅在美国,该领域的研究者就占到该国物理学者整体的近三分之一,凝聚态物理学部也是美国物理学会最大的部门。此外,该领域还与化学,材料科学以及纳米技术等学科领域交叉,并与原子物理学以及生物物理学等物理学分支紧密相关。该领域研究者在理论研究中所采用的一些概念与方法也适用于粒子物理学及核物理学等领域。 晶体学、冶金学、弹性力学以及磁学等等起初是各自独立的学科领域。这些学科在二十世纪四十年代被物理学家统合为固体物理学。时间进入二十世纪六十年代后,有关液体物理性质的研究也被纳入其中,形成凝聚态物理学这一新学科。据物理学家菲利普·安德森所述,术语“凝聚态物理学”是他和首创。1967年,他们把位于卡文迪许实验室的研究组名称由“固体理论”改为“凝聚态理论”。二人觉得原来的名称并没有涵盖液体及等方面研究。但是,“凝聚态”这一术语此前已在欧洲学界出现,只是由他们普及而已。较为著名的例子是施普林格公司于1963年创建的期刊《凝聚态物理学》(Physics of Condensed Matter)。二十世纪六、七十年代的资金环境以及各国政府采取的冷战政策促使相关领域物理学家接纳了“凝聚态物理学”这一术语。他们认为这一术语相对于“固体物理学”而言更为突出了固体、液体、等离子体以及其他复杂物质研究之间的共通性。这些研究与金属和半导体在工业上的应用息息相关。贝尔实验室是最早开展凝聚态物理学研究项目的研究机构之一。 “凝聚态”这一术语在更早的文献中即已出现。例如,在1947年出版的由雅科夫·弗伦克尔撰写的专著《液体动力学理论》(Kinetic theory of liquids)的绪论中,他提出:“液体动力学理论日后也将发展为固体动力学理论的推广与延伸。实际上,更为正确的做法或许是将液体与固体统归为‘--’。”.

新!!: 密度泛函理論和凝聚态物理学 · 查看更多 »

固体物理学

固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础是非相对论性的量子力学,还会使用到电动力学、统计物理中的理论。主要方法是应用薛定谔方程来描述固体物质的电子态,并使用布洛赫波函数表达晶体周期性势场中的电子态。在此基础上,发展了固体的能带论,预言了半导体的存在,并且为晶体管的制造提供理论基础。.

新!!: 密度泛函理論和固体物理学 · 查看更多 »

科恩

科恩、柯恩、克恩、寇恩、高漢(Cohen、Coen、Cölln、Kohn等)可以指:.

新!!: 密度泛函理論和科恩 · 查看更多 »

科恩-沈吕九方程

科恩-沈吕九方程(科恩-沈方程, Kohn–Sham equation)在密度泛函理论里面指的是与真实体系相关的虚拟体系所满足的薛定谔方程。该虚拟体系中的粒子(通常是电子)在无相互作用的有效势场中运动,粒子密度在空间各点均与真实系统相同。科恩-沈吕九方程中的有效势通常用 v_(\mathbf r) 或 v_(\mathbf r)) 来表示,称为科恩-沈势。虚拟系统中的粒子是彼此无相互作用的费米子,因此科恩-沈方程的精确解为单个斯莱特行列式,行列式中的轨道则称为科恩-沈轨道,每一个科恩-沈轨道都可以表示为原子轨道的线性组合,也可以按照基函数展开。科恩-沈方程的形式如下: \left(-\frac\nabla^2+v_(\mathbf r)\right)\phi_(\mathbf r).

新!!: 密度泛函理論和科恩-沈吕九方程 · 查看更多 »

计算化学

计算化学(computational chemistry)是理论化学的一个分支,主要目的是利用有效的数学近似以及电脑程序计算分子的性质,例如总能量、偶极矩、四极矩、振动频率、反应活性等,并用以解释一些具体的化学问题。计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。.

新!!: 密度泛函理論和计算化学 · 查看更多 »

范德华力

范德华力(Van der Waals force)在化学中指分子之间非定向的、无饱和性的、较弱的相互作用力,根据荷兰物理学家约翰内斯·范德瓦耳斯命名。范德华力是一种电性引力,但它比化学鍵或氢键弱得多,通常其能量小於5kJ/mol。范德华力的大小和分子的大小成正比。 范德华力的主要来源有三种机制:.

新!!: 密度泛函理論和范德华力 · 查看更多 »

能隙

能隙(band gap或energy gap)也譯作能帶隙(energy band gap)、禁带--宽度(width of forbidden band),在固態物理學中泛指半導體或是絕緣體的價帶頂端至傳導帶底端的能量差距。 對一個zh-cn:本征半导体;zh-hk:本徵半導體;zh-tw:本質半導體;-而言,其導電性與能隙的大小有關,只有獲得足夠能量的電子才能從價帶被激發,跨過能隙並躍遷至傳導帶。利用費米-狄拉克統計可以得到電子佔據某個能階E_0的機率。又假設E_0>>E_F,E_F是所謂的費米能階,電子佔據E_0的機率可以利用波茲曼近似簡化為: 在上式中,E_g是能隙的寬度、k是波茲曼常數,而T則是溫度。 半導體材料的能隙可以利用一些工程手法加以調整,特別是在化合物半導體中,例如控制砷化鎵鋁(AlGaAs)或砷化鎵銦(InGaAs)各種元素間的比例,或是利用如分子束磊晶(Molecular Beam Epitaxy, MBE)成長出多層的磊晶材料。這類半導體材料在高速半導體元件或是光電元件,如-zh-cn:异质结双极性晶体管;zh-tw:異質接面雙載子電晶體;-(Heterojunction Bipolar Transistor, HBT)、zh-hans:激光二极管;zh-hk:激光二極管;zh-tw:雷射二極體;-,或是太陽能電池上已經成為主流。.

新!!: 密度泛函理論和能隙 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 密度泛函理論和能量 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

新!!: 密度泛函理論和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 密度泛函理論和量子力学 · 查看更多 »

量子化学

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理学与量子化学的标准之一。目前认为最早的量子化学计算是1927年布劳(Ø.Burrau)对离子以及同年瓦尔特·海特勒和弗里茨·伦敦对H2分子的计算,开创量子化学这一個交叉学科。经过近八十年发展之后,量子化学已经成为化学家们广泛应用的一种理论方法。.

新!!: 密度泛函理論和量子化学 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 密度泛函理論和波函数 · 查看更多 »

泛函

传统上,泛函(functional)通常是指一種定義域為函數,而值域为实数的「函數」。换句话说,就是从函数组成的一个向量空间到实数的一个映射。也就是说它的输入为函数,而输出为实数。泛函的应用可以追溯到变分法,那里通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。 在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。 设S\ 是由一些函数構成的集合。所谓S\ 上的泛函就是S\ 上的一个实值函数。S\ 称为该泛函的容许函数集。 函数的变换某种程度上是更一般的概念,参见算子。.

新!!: 密度泛函理論和泛函 · 查看更多 »

斯莱特行列式

斯莱特行列式是多电子体系波函数的一种表达方式,他以量子物理学家斯莱特的名字命名。这种形式的波函数可以满足对多电子波函数的反对称要求(即所谓泡利原理):交换体系中任意两个电子,则波函数的符号将会反转。在量子化学中,所有基于分子轨道理论的计算方法都用斯莱特行列式的形式来表示多电子体系的波函数。.

新!!: 密度泛函理論和斯莱特行列式 · 查看更多 »

重定向到这里:

密度函理論

传出传入
嘿!我们在Facebook上吧! »