我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

增廣拉格朗日惩罚函数法

指数 增廣拉格朗日惩罚函数法

增广拉格朗日惩罚函数法(Augmented Lagrangian methods)是一类用来求解带约束优化问题的算法。与一般的惩罚函数法相比,相同处在于这类方法也会通过将限制条件化为目标函数的惩罚项,使原问题转变为一无约束优化问题;不同处在于,这类方法还会在目标函数中额外添加用来模仿拉格朗日乘子的一项,这一项与拉格朗日乘子不完全一样。 从另一个角度看,无约束目标函数是带约束问题的拉格朗日对偶再加上一个额外的惩罚项(或者称为“增广量”)。 这种方法曾被人们称为乘子法。在20世纪70到80年代曾被作为惩罚函数法的替代方法被大量研究过。这类方法首次由Magnus Hestenes、Powell在1969年提出。R.

目录

  1. 2 关系: 施普林格科学+商业媒体拉格朗日乘数

  2. 优化算法和方法

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

查看 增廣拉格朗日惩罚函数法和施普林格科学+商业媒体

拉格朗日乘数

在数学中的最优化问题中,拉格朗日乘数法(以数学家约瑟夫·拉格朗日命名)是一种寻找多元函数在其变量受到一个或多个条件的约束时的极值的方法。这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日乘子,或拉氏乘子,它们是在转换后的方程,即约束方程中作为梯度(gradient)的线性组合中各个向量的系数。 比如,要求f(x, y) \,在g(x, y).

查看 增廣拉格朗日惩罚函数法和拉格朗日乘数

另见

优化算法和方法