徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

基本多边形

指数 基本多边形

在数学上,每个闭曲面在几何拓扑的意义下,可以由一个偶数条边的有向多边形,把它的边成对地粘合构造出来,这样的多边形称之为基本多边形(fundamental polygon)。 这个构造可以表示成一个长为2n的字符串,一共n个不同的符号,每个符号出现两次带有指数 +1或 -1。指数 -1的符号对应于该边的定向与基本多边形的定向相反。.

40 关系: 基本群多边形子群定向 (数学)实射影平面上半平面不动点亏格度量空间儒勒·昂利·庞加莱几何拓扑学凸集商空间六边形克莱因瓶环面球面紧空间群的展示群的生成集合生成集合直径莫比乌斯变换非阿贝尔群覆疊空間高斯-博内定理黎曼曲面齐性空间轨迹闭包自由群陪集歐幾里得整環沃罗诺伊图流形测地线数学曲率曲面

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

新!!: 基本多边形和基本群 · 查看更多 »

多边形

多邊形是平面的封閉图形、由有限線段(大于2)組成,且首尾連接起來劃出的形狀。.

新!!: 基本多边形和多边形 · 查看更多 »

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

新!!: 基本多边形和子群 · 查看更多 »

定向 (数学)

#重定向 定向 (向量空間).

新!!: 基本多边形和定向 (数学) · 查看更多 »

实射影平面

在数学中,实射影平面(real projective plane)是R3中所有过原点直线组成的空间,通常记作\mathbbP^2,无歧义时也记为P^2。这是一个不可定向、紧致、无边界二维流形(即一个曲面),它在几何中有基本的应用,但不能无自交地嵌入我们通常的三维欧几里得空间。它的亏格是1,故欧拉示性数也为1。 实射影平面有时描述为基于莫比乌斯带的构造:如果能把莫比乌斯带的(一条)边以恰当的方向黏合,将得到射影平面。等价地,沿着莫比乌斯带的边界黏合一个圆盘给出射影平面。 由于莫比乌斯带可构造为将正方形的一组对边反向黏合,从而实射影平面可以表示为单位正方形( × )将它的边界通过如下等价关系等同: 以及 即如右图所示。因为正方形同构于圆盘,故这也等价于将圆盘边界的对径点黏合。.

新!!: 基本多边形和实射影平面 · 查看更多 »

上半平面

上半平面(upper half-plane)H是一数学名詞,是指由虛部為正的复数組成的集合: 此詞語的由來是因為虛數x + iy常視為是在笛卡儿坐标系下,平面中的點(x,y),若垂直方向為Y軸時,其上半平面對應X軸以上的區域,因此也對應y > 0區域的複數。 上半平面是許多複分析中重要函數的定義域,特別是模形式。y n,最大对称,單連通,截面曲率為-1的n維黎曼流形。此表示方式下,上半平面為H2因為其實維度為2。 数论中的希爾伯特模形式和一些函數在許多上半平面組成的空間Hn有關。另一個數論研究者感興趣的空間是Hn,是西格爾模形式的定義域。.

新!!: 基本多边形和上半平面 · 查看更多 »

不动点

在数学中,函数的不动点或定点是指被这个函数映射到其自身一个点。例如,定义在实数上的函数f, 则2是函数f的一个不动点,因为f(2).

新!!: 基本多边形和不动点 · 查看更多 »

亏格

数学上,亏格(genus)有几个不同但密切相关的意思:.

新!!: 基本多边形和亏格 · 查看更多 »

度量空间

在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.

新!!: 基本多边形和度量空间 · 查看更多 »

儒勒·昂利·庞加莱

儒勒·昂利·庞加莱(Jules Henri Poincaré,法語发音,又译作彭加勒、昂利·彭加勒,),通常称为昂利·庞加莱,法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是繼高斯之後对于数学及其应用具有全面知识的最后數學家。 他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人並为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。.

新!!: 基本多边形和儒勒·昂利·庞加莱 · 查看更多 »

几何拓扑学

几何拓扑学是数学中研究流形以及它们的嵌入的分支,俱代表性的主题有紐結理論和辫子群。紐結理論和辫子群是几何拓扑学研究范围的典型例子。随着时间的变迁几何拓扑学几乎等同于考虑二维、三维、或者四维的低维拓扑学。 1945年后拓扑学发展迅速,逐渐地数学家将这个学科分为三个分支:.

新!!: 基本多边形和几何拓扑学 · 查看更多 »

凸集

在点集拓扑学與欧几里得空间中,凸集(convex set)是一個點集合,其中每兩點之間的直线點都落在該點集合中。.

新!!: 基本多边形和凸集 · 查看更多 »

商空间

在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。.

新!!: 基本多边形和商空间 · 查看更多 »

六边形

在幾何學中,六邊形是指有六條邊和六個頂點的多邊形,其內角和為720度。六邊形有很多種,其中對稱性最高的是正六邊形。正六邊形是一種可以使用尺規作圖的六邊形,也可以拼滿平面,因此自然界中可以找到許多正六邊形的結構,如蜂巢、玄武岩和苯的分子結構。另外,正六邊形也可以構成一些高對稱性的多面體,如截角二十面體,巴克明斯特富勒烯的分子結構就是這種形狀。 六邊形依照其類角的性質可以分成凸六邊形和非凸六邊形,其中凸六邊形代表所有內角的角度皆小於180度。非凸六邊形可以在近一步分成凹六邊形和星形六邊形,其中星形六邊形表示邊自我相交的六邊形。.

新!!: 基本多边形和六边形 · 查看更多 »

克莱因瓶

在数学领域中,克莱因瓶(Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。 要想像克萊因瓶的結構,可先試想一個底部鏤空的紅酒瓶。現在延長其頸部,向外扭曲後伸進瓶子的內部,再與底部的洞相連接。 和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。 其名稱可能源自德語中的「Kleinsche Fläche」(克萊因平面),後來被誤解為「Kleinsche Flasche」(克萊因瓶)。德語最終也沿用了「克萊因瓶」這種稱呼。.

新!!: 基本多边形和克莱因瓶 · 查看更多 »

环面

没有描述。

新!!: 基本多边形和环面 · 查看更多 »

球面

球面 (sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆 ”包围着“圆盘”那样)。 就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间中离给定的点距离相同的点的集合 。 这个距离 是球的半径 ,球(ball)则是由离给定点距离小于 的所有点构成的几何体,而这个给定点就是球心。球的半径和球心也是球面的半径和中心。两端都在球面上的最长线段通过球心,其长度是其半径的两倍;它是球面和球体的直径 。 尽管在数学之外,术语“球面”和“球”有时可互换使用,但在数学中是明确区分的:球面是一种嵌在三维欧几里得空间内的二维封闭曲面,而球是一种三维图形,其包括球面和球面内部的一切(闭球),不过更常见的定义是只包括球面内部的所有点,不包括球面上的点(开球)。这种区别并不总是保持不变,尤其是在旧的数学文献里,sphere(球面)被当作固体。这与在平面上混用术语“圆”(circle)和“圆盘”(disk)的情况类似。.

新!!: 基本多边形和球面 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

新!!: 基本多边形和紧空间 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 基本多边形和群 · 查看更多 »

群的展示

在數學中,展示是定義群的一種方法。通過指定生成元的集合 S 使得這個群的所有元素都可以寫為某些這種生成元的乘積,和這些生成元之間的關係的集合 R。稱 G 有展示 非正式的說,G 有上述展示如果它是 S 所生成的只服從關係 R 的“最自由的群”。正式的說,群 G 被稱為有上述展示如果它同構於 S 上的自由群模以關係 R 生成的正規子群的商群。 作為一個簡單的例子,n 階循環群有展示 這里的 e 是群單位元。它可以等價的寫為 因為把不包括等號的項認為是等于群單位元。這種項叫做關係元(relator),區別於包括等號的關係。 所有群都有一個展示,并且事實上有很多不同的展示;展示經常是描述群結構的最簡潔方式。 一個密切關聯但不同的概念是群的絕對展示。.

新!!: 基本多边形和群的展示 · 查看更多 »

群的生成集合

在抽象代數中,群 G 的生成集合是子集 S 使得所有 G 的所有元素都可以表達為 S 的元素和它們的逆元中的有限多個元素的乘積。 更一般的說,如果 S 是群 G 的子集,則 S 所生成的子群 是包含所有 S 的元素的 G 的最小子群,這意味著它是包含 S 元素的所有子群的交集;等價的說, 是可以用 S 的元素和它們的逆元中的有限多個元素的乘積表達的 G 的所有元素的子群。 如果 G.

新!!: 基本多边形和群的生成集合 · 查看更多 »

生成集合

在数学中,表达式生成元、生成、由……生成、生成集合(generator, generate, generated by与generating set)可有许多紧密相关的技术性含义:.

新!!: 基本多边形和生成集合 · 查看更多 »

直径

在数学尤其是几何学中,直径是圆形的特性之一,是指穿过圆心且其兩端點皆在圓周上的线段或者該線段的長度是最長的,一般用符号d或著Ø表示。 在一般的度量空间(也就是定义了距离的空间,比如说常见的二维平面)上,也可以定义一个集合的直径。在这里直径是这个集合之中两点之间的距离的最小上界:.

新!!: 基本多边形和直径 · 查看更多 »

莫比乌斯变换

在几何学--, 莫比乌斯变换是一类从黎曼球面映射到自身的函数。用扩展复平面上的复数表示的话,其形式为: 其中 z, a, b, c, d 为满足 ad − bc ≠ 0的(扩展)复数。 莫比乌斯变换也可以被分解为以下几个变换:把平面射影到球面上,把球体进行旋转、位移等任何变换,然后把它射影回平面上。 莫比乌斯变换是以数学家奥古斯特·费迪南德·莫比乌斯的名字命名的,它也被叫做单应变换(homographic transformation)或分式线性变换(linear fractional transformation)。.

新!!: 基本多边形和莫比乌斯变换 · 查看更多 »

非阿贝尔群

数学里的非阿贝尔群,也称 非交换群,是一種群。它由自身的集合G和二元運算 * 構成,在符合群的定義之餘,G至少存在两个元素a和b,满足条件a*b \neq b*a 。 非阿贝尔是为了與阿贝尔群區分開來,其中所有的元素都满足交换律。 非阿贝尔群在数学和物理中广泛存在。最小的非阿贝尔群是4阶二面体群。物理中的常见例子是三维中的旋转群(绕不同的轴的旋转交换顺序会造成不同的结果),這也称作四元群。 连续群和离散群都是非阿贝尔的。 大多数有趣的李群都是非阿贝尔的,它们在规范场论中扮演着重要角色。.

新!!: 基本多边形和非阿贝尔群 · 查看更多 »

覆疊空間

在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.

新!!: 基本多边形和覆疊空間 · 查看更多 »

高斯-博内定理

在微分几何中,高斯-博内定理(亦称高斯-博内公式)是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述。它是以卡尔·弗里德里希·高斯和皮埃尔·奥西安·博内命名的,前者发现了定理的一个版本但从未发表,后者1848年发表了该定理的一个特例。.

新!!: 基本多边形和高斯-博内定理 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

新!!: 基本多边形和黎曼曲面 · 查看更多 »

齐性空间

在数学,特别是李群、代数群与拓扑群的理论中,关于群G的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间X,G可传递性作用在X上,G中的元素稱之為X的對稱。一个特例是群G就是空间X的自同構群,這裡自同構群可以是等矩同構群、微分同肧群或是同肧群。在這些例子中,如果直觉想成X于任何地方局部看起来一样,則X是齐性的。像是等矩同構(剛體幾何)、微分同肧(微分幾何)或是同肧(拓撲)。一些作者要求G的作用是有效的(或忠实),不过本文并不要求这样。从而X上存在可以想象为保持X上相同“几何结构”的一个群作用,使X成为一个单''G''-轨道。.

新!!: 基本多边形和齐性空间 · 查看更多 »

轨迹

在数学中,轨迹指的是含有某种性质的所有点的集合。它是一种几何形状。 常见的轨迹:.

新!!: 基本多边形和轨迹 · 查看更多 »

闭包

闭包可以指:.

新!!: 基本多边形和闭包 · 查看更多 »

自由群

在數學中,一個群 G 被稱作自由群,如果存在 G 的子集 S 使得 G 的任何元素都能唯一地表成由 S 中元素及其逆元組成之乘積(在此不論平庸的表法,例如 st^.

新!!: 基本多边形和自由群 · 查看更多 »

陪集

数学上,若G为群,H为其子群,而g为G中元素,则 仅当H为正规子群时,左右陪集相同,这也是子群正规性的一个定义。 陪集指某个G中子群的左或右陪集。因为Hg.

新!!: 基本多边形和陪集 · 查看更多 »

歐幾里得整環

在抽象代數中,歐幾里得整環(Euclidean domain)是一種能作輾轉相除法的整環。凡歐幾里得整環必為主理想環。.

新!!: 基本多边形和歐幾里得整環 · 查看更多 »

沃罗诺伊图

沃罗诺伊图(Voronoi Diagram,也称作Dirichlet tessellation,狄利克雷镶嵌)是由俄国数学家格奧爾吉·沃羅諾伊建立的空间分割算法。灵感来源于笛卡尔用凸域分割空间的思想。在几何、晶体学、建筑学、地理学、气象学、信息系统等许多领域有广泛的应用。.

新!!: 基本多边形和沃罗诺伊图 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 基本多边形和流形 · 查看更多 »

测地线

测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线(geodesic)的名字来自对于地球尺寸与形状的大地测量学(geodesy)。.

新!!: 基本多边形和测地线 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 基本多边形和数学 · 查看更多 »

曲率

曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.

新!!: 基本多边形和曲率 · 查看更多 »

曲面

在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.

新!!: 基本多边形和曲面 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »