目录
基
*在化学上:.
查看 埃尔米特多项式和基
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
查看 埃尔米特多项式和多項式
夏爾·埃爾米特
夏尔·埃尔米特或译作夏勒·厄密(Charles Hermite,,)是一位杰出的法国数学家,因证明e是超越数而闻名。他的研究领域还涉及数论、线性泛函分析(一种无穷维线性代数)、不变量理论、正交多项式、椭圆函数和代数学。埃尔米特多项式、埃尔米特规范形式、埃尔米特算子(自伴算子)、埃尔米特矩阵(自伴矩阵)和立方埃尔米特样条插值法都以他命名。其中有关内积空间中自伴算子(厄密算符)的趣味理论意外地成为了半个世纪后兴起的量子力学研究的基础代数工具。 “自伴算子(埃尔米特算子)可与实数类比,其特征值一定是实数”这个不太起眼的基础性质却是量子力学必须引用自伴算子来表达可观测物理量的最大原因,而量子力学中的算子运算也为线性代数学中的对偶空间理论提供了一个重要而奇妙的应用实例。.
完备空间
完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.
查看 埃尔米特多项式和完备空间
内积
#重定向 点积.
查看 埃尔米特多项式和内积
克罗内克函数
#重定向 克罗内克δ函数.
组合数学
广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.
查看 埃尔米特多项式和组合数学
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
查看 埃尔米特多项式和物理学
阿佩尔方程
在經典力學中,阿佩尔方程適用於非完整系的動力學方程。是在1900年由阿佩爾描述,其方程式為: \frac.
量子諧振子
在量子力學裏,量子諧振子(quantum harmonic oscillator)是古典諧振子的延伸。其為量子力學中數個重要的模型系統中的一者,因為一任意勢在穩定平衡點附近可以用諧振子勢來近似。此外,其也是少數幾個存在簡單解析解的量子系統。量子諧振子可用來近似描述分子振動。.
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
查看 埃尔米特多项式和概率论
標準差
標準差(又稱标准偏差、--,,缩写SD),数学符号σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。測量到分佈程度的結果,原則上具有兩種性質:.
查看 埃尔米特多项式和標準差
機率密度函數
在数学中,连续型随机变量的概率密度函數(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。概率密度函数一般以大写“PDF”(Probability Density Function)標记。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数或概率质量函数混淆。.
正交
正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.
查看 埃尔米特多项式和正交
正态分布
常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.
查看 埃尔米特多项式和正态分布
法国
法兰西共和国(République française ),簡稱法国(France ),是本土位於西歐並具有海外大區及領地的主權國家,自法蘭西第五共和國建立以來实行单一制與半总统制,首都為歐盟最大跟歐洲最大的文化與金融中心巴黎。該國本土由地中海一直延伸至英倫海峽及北海,並由萊茵河一直延伸至大西洋,整體呈六角狀。海外领土包括南美洲的法属圭亚那及分布于大西洋、太平洋和印度洋的诸岛屿。全国共分为18个大区,其中5个位于海外。法国與西班牙及摩洛哥為同時擁有地中海及大西洋海岸線的三個國家。法國的国土面积全球第四十一位,但卻為歐盟及西歐國土面積最遼闊的國家,歐洲面積第三大國家。 今日之法国本土于铁器时代由高卢人(凯尔特人的一支)征服,前51年又由罗马帝国吞并。486年法兰克人(日耳曼人的一支)又征服此地,其于该地域建立的早期国家最终发展成为法兰西王国。法国至中世纪末期起成为欧洲大国,國力於19-20世紀時達致巔峰,建立了世界第二大殖民帝國,亦為20世紀人口最稠密的國家,現今則是众多前殖民地的首選移民国。在漫長的歷史中,法國培養了不少對人類發展影響深遠的著名哲學家、文學家與科學家,亦為文化大国,具有第四多的世界遺產。 法國在全球範圍內政治、外交、軍事與經濟上為舉足輕重的大國之一。法國自1958年建立第五共和国後經濟有了很大的發展,政局保持穩定,國家體制實行半總統制,國家經由普選產生的總統、由其委任的總理與相關內閣共同執政。1958年10月4日,由公投通過的國家憲法則保障了國民的民主權及宗教自由。法國的建國理念主要建基於在18世紀法國大革命中所制定的《人權和公民權宣言》,此乃人類史上較早的人權文檔,並對推動歐洲以至於全球的民主與自由產生莫大的影響;其藍白紅三色的國旗則有「革命」的含義。法國不僅為聯合國常任理事國,亦是歐盟始創國。該國國防預算金額為全球第5至6位,並擁有世界第三大核武貯備量。法國為发达国家,其GDP為全球第六大經濟體系,具備世界第十大購買力,並擁有全球第二大專屬經濟區;若以家庭總財富作計算,該國是歐洲最富有的國家,位列全球第四。法國國民享有高生活質素,在教育、預期壽命、民主自由、人類發展等各方面均有出色的表現,特別是醫療研發與應用水平長期盤據世界首位。其國內許多軍備外銷至世界各地。目前,法国是。.
查看 埃尔米特多项式和法国
期望值
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.
查看 埃尔米特多项式和期望值
本征态
#重定向 特征值和特征向量#薛定谔方程.
查看 埃尔米特多项式和本征态
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 埃尔米特多项式和数学
数学家
数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.
查看 埃尔米特多项式和数学家
亦称为 厄米多項式。