目录
动物
動物是多細胞真核生命體中的一大類群,統稱為動物界。動物身體的基本形態會隨著其發育而變得固定,通常是在其胚胎發育時,但也有些動物會在其生命中有變態的過程。 大多數動物能自發且獨立地移動探索,只有極少數的動物(如珊瑚)是固定在一點無法移動。動物行為學是研究動物行為的科學,較著名的行為理論為康納德·洛倫茨提出的本能理論。 已發現的動物化石,多是在五億四千萬年前的寒武紀大爆發時的海洋物種。.
查看 同源框和动物
基因
基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.
查看 同源框和基因
同源异形基因
同源异形基因(Hox genes)是生物體中一類專門調控生物形體的基因,一旦這些基因發生突變,就會使身體的一部分變形。其作用機制,主要是調控其他有關於細胞分裂、紡錘體方向,以及硬毛、附肢等部位發育的基因。Hox基因屬於同源框家族的其中一員,在大多數Hox基因中,會含有一段約180個核苷酸的同源異型盒,可以轉錄出含有約60個氨基酸序列,稱為同源异形域。 Hox基因的特色之一,是其排列順序与其作用順序、作用位置相关,例如位在較靠近3'端(DNA的其中一端)的基因,作用的位置較靠近頭部。而且動物界中的成員,皆擁有類似的Hox基因排列方式、產物與作用方式。Hox基因對於動物型態的影響,能使演化生物學研究得到關於型態轉變的線索。.
查看 同源框和同源异形基因
结构域
蛋白质结构域(protein domain)是蛋白质中的一类结构单元,是构成蛋白质(三级)结构的基本单元。 有些球形蛋白的一条肽链,或以共价键相连的两条或多条肽链在空间结构上可以区分为若干个球状的子结构,其中的每一个球状子结构就被称为一个结构域。 同一个蛋白的各个结构域之间是以肽链相互链接的,而链接两个蛋白质结构域的绝大多数都是单股肽链,只有在极个别的情况下会有少数的双股肽链联系不同的结构域。在X射线晶体学衍射实验绘制的电子密度图中,可以清楚地看到有些球状蛋白地的部存在一些裂隙,这些裂隙就是各个结构域之间的链接部分,蛋白质结构域之间的链接虽然是松散的,但他们仍然属于同一条肽链,靠肽链链接这一点和蛋白质的各个亚基之间依靠非键相互作用维系结构有着本质的区别。 蛋白质结构域在空间上具有临近相关性:即在蛋白质一级结构上相互临近的氨基酸残基,在蛋白质结构域的三维空间结构上也相互临近,在蛋白质一级结构上相互远离的氨基酸残基,在蛋白质结构域的空间结构上也相互远离,甚至分别属于不同的蛋白质结构域。 蛋白质结构域与蛋白质完成生理功能有着密切的关系,有时几个结构域共同完成一项生理功能,有时一个结构域就可以独立完成一项生理功能,但是一个结构不完整的蛋白质结构域是不可能产生生理功能的。因此蛋白质结构域是蛋白质生理功能的结构基础,但必须指出的是,虽然蛋白质结构域与蛋白质的功能关系密切,但是蛋白质结构域和功能域的概念并不相同。.
查看 同源框和结构域
真菌
真菌即真菌界(学名:Fungi)生物的通称,又稱菌物界,是真核生物中的一大類群,包含酵母、黴菌之類的微生物,及最為人熟知的菇類。真菌自成一界,與植物、動物和原生生物相區別。真菌和其他三種生物最大不同之處在於,真菌的細胞有含幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。卵菌和黏菌、水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,通常被視為植物學的一個分支。但事實顯示,真菌和動物之間的關係要比和植物之間更加親近。 雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且它們會生活在土壤內、腐質上、以及與植物、動物或其他真菌共生。部分菇類及黴菌可能會在結成孢子時變得較顯眼。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌從很久以前便被當做直接的食物來源(如菇類及松露)、麵包的膨鬆劑及發酵各種食品(如葡萄酒、啤酒及醬油)。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素是由真菌所製造的,並運用在工業上。真菌亦被當做生物農藥,用來抑制雜草、植物疾病及害蟲。真菌中的許多物種會產生有的物質,稱為(如生物鹼和聚酮),對包括人類在內的動物有毒。一些物種的孢子含有精神藥物的成份,被用在娛樂及古代的宗教儀式上。真菌可以分解人造的物質及建物,並使人類及其他動物致病。因真菌病(如)或食物腐敗引起的作物損失會對人類的食物供給和區域經濟產生很大的影響。 真菌各門的物種之間不論是在生態、生物生命周期、及形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有150萬-500萬個物種,其中被正式分類的則只有約5%。自從18、19世紀,卡爾·林奈、克里斯蒂安·亨德里克·珀森及伊利阿斯·馬格努斯·弗里斯等人在分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展開啟了將DNA測序加入分類學的道路,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系统发生学上的研究已幫助真菌界重新分類,共分為一個亞界、七個門、及十個亞門。.
查看 同源框和真菌
Drosophila melanogaster
#重定向 黑腹果蝇.
查看 同源框和Drosophila melanogaster
转录
转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.
查看 同源框和转录
胚胎發育
#重定向 胚胎发育.
查看 同源框和胚胎發育
脱氧核糖核酸
--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.
查看 同源框和脱氧核糖核酸
核苷酸
核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.
查看 同源框和核苷酸
植物
植物(Plantae)是生命的主要形態之一,並包含了如乔木、灌木、藤類、青草、蕨類及綠藻等熟悉的生物。種子植物、苔蘚植物、蕨類植物和擬蕨類等植物,據估計現存大約有350000個物種。直至2004年,其中的287655個物種已被確認,有258650種開花植物15000種苔蘚植物(参见条目中表格)。綠色植物大部份的能源是經由光合作用從太陽光中得到的。.
查看 同源框和植物
演化發育生物學
演化發育生物學(Evolutionary developmental biology、evo-devo)簡稱為演化發生學,是一个生物研究领域,比较了不同生物体的发育过程,以推断它们之间的祖先关系以及发育过程如何演化。 这个领域的成长从19世纪初开始,胚胎学面临一个谜:动物学家不知道--在分子水平上是如何被控制的。 查尔斯·达尔文指出,有相似的胚胎意味着共同的祖先,但是直到1970年代才有进展。然后,重组DNA技术最终将胚胎学与分子遗传学结合起来。一个关键的早期发现是在广泛真核生物中调控发育的同源基因。 该领域的特点是一些关键概念,让生物学家感到惊奇。一个是,发现不同的器官,例如昆虫,脊椎动物和头足纲软体动物的眼睛,长期以来被认为是独立进化的,是被类似的基因如来自的来控制。这些基因是古老的,在门之间高度保守的; 它们产生形成胚胎的时间和空间的模式,并最终形成生物的。另一个是它们的结构基因如编码酶的那些物种没有多大差异; 不同的是受到工具包基因的方式不同。这些基因在胚胎的不同部位和不同的发育阶段被重复使用,不改变,多次,形成了复杂的控制级联,以精确的模式开启和关闭其他调控基因以及结构基因。这种多重基因多效性重复使用解释了为什么这些基因是高度保守的,因为任何改变都具有自然选择会反对的许多不良后果。 当基因以新的模式表达时,或者当工具包基因获得附加功能时,新的形态学特征和最终的新物种是通过工具包的变化而产生的。另一种可能性是新拉马克主义理论的表观遗传变化在基因水平上得到巩固,这在多细胞生命历史早期可能已经很重要的。.
查看 同源框和演化發育生物學
另见
基因
演化发育生物学
转录因子
- AP-1转录因子
- C-Myc
- CDX1
- CTCF
- DNA结合位点
- E2F1
- EGR2
- EGR3
- EGR4
- EPAS1
- FOSB
- HBP1
- ID3 (基因)
- JAK-STAT信号通路
- MLL (基因)
- NEUROD1
- NF-κB
- P53
- PITX2
- RAR相关孤儿受体
- SRY基因
- STAT1
- STAT2
- STAT3
- STAT4
- STAT6
- TATA结合蛋白
- ZEB1
- 信号转导及转录激活蛋白
- 同源框
- 同源框蛋白質NANOG
- 孕酮受体
- 早期生长反应蛋白
- 类法尼醇x受体
- 缺氧誘導因子
- 自體免疫調節因子
- 芳香烃受体
- 螺旋-轉角-螺旋
- 视网膜母细胞瘤蛋白
- 视黄酸受体α
- 转录因子
- 过氧化物酶体增殖物活化受体γ
- 通用转录因子
亦称为 Homeobox,同位序列,同位序列基因,同源异形盒。