目录
半导体
半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.
查看 制冷和半导体
地球
地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.
查看 制冷和地球
制冷剂
--,又稱--、致冷劑、--,是各种热机中借以完成能量转化的媒介物质。这些物质通常以可逆的相变(如气-液相变)来增大功率。如蒸汽引擎中的蒸汽、制冷机中的雪种等等。一般的蒸汽机在工作时,将蒸汽的热能释放出来,转化为机械能以产生原动力;而制冷机的雪种则用来將低温处的热量传动到高温处。 传统工业及生活中较常见的工作介质是部分卤代烃(尤其是氯氟烃),但现在由于它们會造成臭氧层空洞而逐渐被淘汰。其他应用较广的工作介质有氨气、二氧化硫和非卤代烃(例如甲烷)。.
查看 制冷和制冷剂
冰箱
冰箱(又称电冰箱,台语称霜橱或冰橱,香港称雪柜,中國大陆稱冰櫃,家用稱冰箱,日本和韓國的漢字皆稱其為冷藏庫,朝鮮在文化語譯法為冷凍機)是以低溫保存食物等物品的机械設備。工業用冰箱適用於工業環境,如餐廳、食品加工和超級市場。.
查看 制冷和冰箱
冷却
冷卻(Cooling)是内部热能通过熱輻射、热传导或对流传热给环境介质的过程。冷卻还可以指:.
查看 制冷和冷却
冷冻
#重定向 凝固.
查看 制冷和冷冻
环境
环境是指周围所在的条件,对不同的对象和科学学科来说,环境的内容也不同。 环境可以指:.
查看 制冷和环境
空氣調節
氣調節是包含溫度、濕度、空氣清淨度以及空氣循環的控制系統。冷氣機/空調供應冷氣、暖氣或除濕的作用原理均類似,大部分利用冷媒在壓縮機的作用下,發生蒸發或凝結,從而引發週遭空氣的蒸發或凝結,以達到改變溫、濕度的目的。冷氣機及暖氣機的效率會用性能係數來表示,是輸入功和提供熱能(或抽出熱能)的比例值,一般來說,直流馬達比交流省電,變頻比傳統壓縮機省電,因為能夠節省大量的電費,直流變頻型態逐漸成為市場大宗。 空氣調節在臺灣、香港、馬來西亞、新加坡通稱「冷--氣」,因為該地區位處亞熱帶,氣候潮濕炎熱,空調的絕大部分作用只是製造冷--氣,鮮有需要製造暖氣,但也有冷暖氣合一的機種,這種比較常見的通常都安裝在車內。.
查看 制冷和空氣調節
热力学
热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J.
查看 制冷和热力学
热能
在熱力學中,熱能(Thermal energy)是能量的一種形式,指存在於系統中的內部能量,宏觀表現為物體的溫度。 一個物體的熱能和其整體的運動狀態(即物體的位置與速度)無關,僅和物體的內部狀態有關,因此我們有時也稱熱能為內能。熱能是這個概念在物理或熱力學方面沒有明確定義,因為內部能量可以在不改變溫度的情況下進行改變,而無法區分系統內部能量的哪一部分是“熱”。熱能有時被鬆散地用作更嚴格的熱力學量(例如係統的(整個)內部能量)的同義詞;或用於定義為能量轉移類型的熱或顯熱(正如工作是另一種類型的能量轉移)。熱量和工作取決於能量轉移發生的方式,而內部能量是系統狀態的屬性,因此即使不知道能量到達那裡也是可以理解的。.
查看 制冷和热能
熱電效應
热电效应(Thermoelectric effect)是一個由温差产生电压的直接转换,且反之亦然。简单的放置一个热电装置,当他们的两端有温差时会产生一个电压,而当一个电压施加于其上,他也会产生一个温差。这个效应可以用来产生电能、测量温度,冷却或加热物体。因为这个加热或制冷的方向决定于施加的电压,热电装置让温度控制变得非常容易。 一般来说,热电效应这个术语包含了三个分别经定义过的效应,赛贝克效应(Seebeck effect,由Thomas Johann Seebeck发现 。)、帕尔帖效应(Peltier effect,由Jean-Charles Peltier发现。),与汤姆森效应(Thomson effect,由威廉·汤姆孙发现)。在很多教科书上,热电效应也被称为帕尔帖-塞贝克效应(Peltier–Seebeck effect)。它同时由法国物理学家讓·查爾斯·佩爾蒂(Jean Charles Athanase Peltier)与爱沙尼亚裔德國物理学家 (Thomas Johann Seebeck)分別独立发现。 还有一个术语叫焦耳加热,也就是說當一个电压通过一个阻抗物质上,即會產生熱,它是多少有关系的,尽管它不是一个普通的热电效应术语(由於热电裝置的非理想性,它通常被視為一個產生損耗的機制)。帕尔帖-塞贝克效应与汤姆孙效应是可逆的,但是焦耳加热不可逆。.
查看 制冷和熱電效應
运输
運輸,是指運輸主體(人或者是貨物)透過運輸工具(或交通工具與運輸路徑),由甲地移動至乙地,完成某個經濟目的的行為。因此,運輸是一種「衍生的經濟行為」,運輸多半都是為了完成某些經濟行為,例如購物、上班、上學、訪友等需求而進行。 而運輸主體與運輸工具在運輸路徑上所產生的互動現象,即為交通現象。因此運輸是一種兩地間的移動行為,而交通是兩地之間所發生的現象。「運輸」與「交通」兩詞常受到混用,中文习用「交通擁擠」而非「運輸擁擠」,「運輸路徑」而非「交通路徑」。.
查看 制冷和运输
能源
使用能源通過控制和適應環境使它在人類社會裡成為一個關鍵的發展。在任何一個社會都無法避免管理能源的使用。在工業化國家裡,能源資源的發展在農業、運輸、垃圾收集、信息技術和通訊是成為發達社會的先決條件。自從工業革命後,能源的使用越來越多,同時也帶來一些嚴重的問題,其中一些,如全球暖化對目前全世界有潛在嚴重的風險。另外由於經濟活動,如製造業和運輸業的密集,能源效率﹑依賴﹑安全和價格等的問題也令人關注。 在人類社會背景下的能源資源:能源資源作為能源的同義詞,一般來說常指物質,例如燃料,石油加工產品和電力。這些都是可利用的能源來源,因為它們可以很容易地轉化為其他為特定的用處種類的能源。 在自然界中,能源可以採取幾種不同的形式存在:熱,電,輻射,化學能等。許多這些形式可以很容易轉化為另一種的幫助下,如利用裝置;從化學能到電能使用的電池。但我們大多數現有的能源來自於太陽。巨大潛在的能源闡述可由著名的公式E.
查看 制冷和能源
臭氧层
臭氧層是指大氣層的平流層中臭氧濃度相對較高的部分,主要作用是吸收短波紫外線。臭氧層密度低,如果它被壓縮到對流層的密度,則只有數毫米厚。.
查看 制冷和臭氧层
氨
氨(Ammonia,或称氨氣、阿摩尼亞或無水氨,分子式为NH3)是无色气体,有强烈的刺激气味,极易溶于水。常温常压下,1單位体积水可溶解700倍体积的氨。氨對地球上的生物相當重要,是所有食物和肥料的重要成分。氨也是很多藥物和商業清潔用品直接或间接的組成部分,具有腐蝕性等危險性质。 由於氨有廣泛的用途,成為世界上產量最多的無機化合物之一,約八成用於製作化肥。2006年,氨的全球產量估計為1.465億吨,主要用於製造商業清潔產品。 氨可以提供孤電子對,所以也是路易斯鹼。.
查看 制冷和氨
氯氟烃
氯氟烃(Chlorofluorocarbons,簡稱CFCs),又稱氟氯烴、氯氟碳化合物、氟氯碳化合物、氟氯碳化物、氯氟化碳,是一組由氯、氟及碳組成的鹵代烷。 因為低活躍性、不易燃燒及無毒,氯氟碳化合物被廣泛使用於日常生活中。其中氟利昂是包括二氯二氟甲烷在內的數種由生產之化合物的商標名稱。.
查看 制冷和氯氟烃
液化
液化指物质由气态转变为液态的过程。.
查看 制冷和液化
温度
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.
查看 制冷和温度
湿度
溼度一般在氣象學中指的是空气溼度,它是空气中水蒸气的含量。空气中液态或固态的水不算在溼度中。不含水蒸气的空气被称为乾空氣。由於大气中的水蒸气可以占空气体积的0%到4%,一般在列出空气中各种气体的成分的时候是指这些成分在乾空气中所占的成分。.
查看 制冷和湿度
机械能
机械能()又作--,是指宏观物质所表现出的势能(位能)Ep与动能Ek的总和,即.
查看 制冷和机械能
另见
制冷技术
- 主動冷卻
- 人體冷凍技術
- 低温物理学
- 保温车
- 冰窖
- 冰箱
- 冰袋
- 冷却
- 冷却剂
- 冷却浴
- 冷卻塔
- 制冰机
- 制冷
- 協同冷卻
- 吊扇
- 導熱膏
- 扇子
- 水冷
- 液冷式發動機
- 熱污染
- 空氣調節
- 细胞存活系统
- 除濕機
- 雷射冷卻
- 風冷
- 风扇