我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

熱電效應

指数 熱電效應

热电效应(Thermoelectric effect)是一個由温差产生电压的直接转换,且反之亦然。简单的放置一个热电装置,当他们的两端有温差时会产生一个电压,而当一个电压施加于其上,他也会产生一个温差。这个效应可以用来产生电能、测量温度,冷却或加热物体。因为这个加热或制冷的方向决定于施加的电压,热电装置让温度控制变得非常容易。 一般来说,热电效应这个术语包含了三个分别经定义过的效应,赛贝克效应(Seebeck effect,由Thomas Johann Seebeck发现 。)、帕尔帖效应(Peltier effect,由Jean-Charles Peltier发现。),与汤姆森效应(Thomson effect,由威廉·汤姆孙发现)。在很多教科书上,热电效应也被称为帕尔帖-塞贝克效应(Peltier–Seebeck effect)。它同时由法国物理学家讓·查爾斯·佩爾蒂(Jean Charles Athanase Peltier)与爱沙尼亚裔德國物理学家 (Thomas Johann Seebeck)分別独立发现。 还有一个术语叫焦耳加热,也就是說當一个电压通过一个阻抗物质上,即會產生熱,它是多少有关系的,尽管它不是一个普通的热电效应术语(由於热电裝置的非理想性,它通常被視為一個產生損耗的機制)。帕尔帖-塞贝克效应与汤姆孙效应是可逆的,但是焦耳加热不可逆。.

目录

  1. 21 关系: 威廉·汤姆孙威廉·汤姆森平均自由程伏特传热开尔文德国磁場热电偶热电堆热能焦耳加热焦耳定律熱導率熱電效應载流子赛贝克效应金属汤姆森效应汉斯·奥斯特温度

  2. 热电

威廉·汤姆孙

#重定向 第一代开尔文男爵威廉·汤姆森.

查看 熱電效應和威廉·汤姆孙

威廉·汤姆森

#重定向 第一代开尔文男爵威廉·汤姆森.

查看 熱電效應和威廉·汤姆森

平均自由程

气体分子的平均自由程(Mean free path)指气体分子两次碰撞之间的时间内经过的路程的统计平均值,一般用\overline\,表示。例如,在20℃下、标准大气压(101 KPa)下,氮气分子的平均自由程约为60纳米。 理想气体分子两次碰撞之间做匀速直线运动,类似分子的平均碰撞频率,每两次碰撞之间的路程是由气体分子的自身状态决定的。气体分子的平均自由程与分子的直径或半径、分子数密度成反比。.

查看 熱電效應和平均自由程

伏特

伏特(volt)是国际单位制中电压的单位,符号V。 在一根均匀的、宽度和温度恒定的导线上假如有一安培电流流动,那么导线的电阻在一定的距离内將电能转化为热能1瓦(W.

查看 熱電效應和伏特

传热

热有三种方式:.

查看 熱電效應和传热

开尔文

开尔文(Kelvin)是温度的计量单位。它是國際單位制(SI)的七个基本單位之一,符號为K。以开尔文计量的温度标准称为热力学温标,其零点为绝对零度。在热力学的经典表述中,绝对零度下所有热运动停止。1开尔文定义为水的三相点與绝对零度相差的。水的三相点是0.01°C,因此温度变化1攝氏度,相当于变化了1开尔文。 开氏温标得名自英國工程师和物理学家威廉·汤姆森,第一代开尔文男爵(1824–1907)。.

查看 熱電效應和开尔文

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

查看 熱電效應和德国

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

查看 熱電效應和磁場

热电偶

热电偶(Thermocouple)是一种被广泛应用的温度传感器,也被用来将热势差转换为电势差。它的价格低廉、易于更换,且有标准接口,具有很大的温度量程。主要的局限是精度,小于1摄氏度的系统误差通常较难达到。 1821年,德国-爱沙尼亚物理学家发现任何导体(金属)被施加热梯度时都会产生电压。现在这种现象被称为熱電效應或「Seebeck效应」。若要测量这个电压,必须把“热”端连到另一导体上。增加的导体也会经历热梯度,自身也会产生一个电压,并与原来的电压抵消。 幸运的是,热电效应中电压的大小取决于金属的种类。在电路中使用不同的金属会产生不同的电压,这个电压被称为热电势,因此存在一个很小的电压差值可以被测量,这个差值随温度的升高而增大。对于目前常用的金属组合,这个差值通常在1到大约70微伏每摄氏度之间。一些常用的固定组合成为工业标准,如选择热电偶类型时通常考虑到成本、适用、便利、熔点、化学性质、稳定性和输出。由於熱電偶產生的電壓很小,很多的應用是利用熱電偶堆。.

查看 熱電效應和热电偶

热电堆

热电堆是一种能把温差和电能相互转化的元件。当热电堆的两边出现温差时,会产生电流,可用于测量温度。反之,通以电流,其两面会产生温差,也有专门利用其冷端的器件,称“半导体制冷片”,可在汽车冰箱,激光冷却系统,以及饮水机里边见到。结构上,它由多个热电偶组成。使用热电堆测量温度时,可以克服单个热电偶产生的电势差太小而难以测量的缺点,避免使用昂贵的高精度运算放大器。 热电堆广泛用于温度测量,例如 红外线温度计在医疗上广泛地用于测量人体温度。也被用于制造热流传感器(如莫尔热电偶 、 日温计) 相对于热电偶,热电堆的输出电压通常在10-几百毫伏的数量级。 热电堆还可利用温差发电,比如地热能,以及其他难以利用的低温废热。和太阳能发电类似,这种发电方法对环境无任何污染,是一种绿色能源。.

查看 熱電效應和热电堆

热能

在熱力學中,熱能(Thermal energy)是能量的一種形式,指存在於系統中的內部能量,宏觀表現為物體的溫度。 一個物體的熱能和其整體的運動狀態(即物體的位置與速度)無關,僅和物體的內部狀態有關,因此我們有時也稱熱能為內能。熱能是這個概念在物理或熱力學方面沒有明確定義,因為內部能量可以在不改變溫度的情況下進行改變,而無法區分系統內部能量的哪一部分是“熱”。熱能有時被鬆散地用作更嚴格的熱力學量(例如係統的(整個)內部能量)的同義詞;或用於定義為能量轉移類型的熱或顯熱(正如工作是另一種類型的能量轉移)。熱量和工作取決於能量轉移發生的方式,而內部能量是系統狀態的屬性,因此即使不知道能量到達那裡也是可以理解的。.

查看 熱電效應和热能

焦耳加热

耳加热也称为欧姆加热或电阻加热,是电流通过导体产生热量的过程。 焦耳定律或焦耳-楞次定律是定量說明傳導電流將電能轉換為熱能的定律。 1841年,英國物理學家詹姆斯·焦耳發現載流導體中產生的熱量Q(稱為焦耳熱)與電流I的平方、導體的電阻R和通電時間t成比例。而在1842年時,俄國物理學家海因里希·楞次也獨立發現上述的關係,因此也稱為「焦耳-楞次定律」。 採用國際單位制時,焦耳定律的表達式為: Q.

查看 熱電效應和焦耳加热

焦耳定律

#重定向 焦耳效应.

查看 熱電效應和焦耳定律

熱導率

热导率k是指材料直接传导热能的能力,或称热传导率。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的熱能。热导率的单位为瓦米-1开尔文-1 W \over\ m K。 热导率k.

查看 熱電效應和熱導率

熱電效應

热电效应(Thermoelectric effect)是一個由温差产生电压的直接转换,且反之亦然。简单的放置一个热电装置,当他们的两端有温差时会产生一个电压,而当一个电压施加于其上,他也会产生一个温差。这个效应可以用来产生电能、测量温度,冷却或加热物体。因为这个加热或制冷的方向决定于施加的电压,热电装置让温度控制变得非常容易。 一般来说,热电效应这个术语包含了三个分别经定义过的效应,赛贝克效应(Seebeck effect,由Thomas Johann Seebeck发现 。)、帕尔帖效应(Peltier effect,由Jean-Charles Peltier发现。),与汤姆森效应(Thomson effect,由威廉·汤姆孙发现)。在很多教科书上,热电效应也被称为帕尔帖-塞贝克效应(Peltier–Seebeck effect)。它同时由法国物理学家讓·查爾斯·佩爾蒂(Jean Charles Athanase Peltier)与爱沙尼亚裔德國物理学家 (Thomas Johann Seebeck)分別独立发现。 还有一个术语叫焦耳加热,也就是說當一个电压通过一个阻抗物质上,即會產生熱,它是多少有关系的,尽管它不是一个普通的热电效应术语(由於热电裝置的非理想性,它通常被視為一個產生損耗的機制)。帕尔帖-塞贝克效应与汤姆孙效应是可逆的,但是焦耳加热不可逆。.

查看 熱電效應和熱電效應

载流子

在物理学中,载流子(charge carrier),或簡稱載子(carrier),指可以自由移动的带有电荷的物质微粒,如电子和离子。在半导体物理学中,电子流失导致共价键上留下的空位(空穴)被视为载流子。 在电解质溶液中,载流子是已溶解的阳离子和阴离子。类似地,游离液体中的阳离子和阴离子在液体和熔融态固体电解质中也是载流子。霍尔-埃鲁法就是一个熔融电解的例子。 在等离子体,如电弧中,电离气体和汽化的电极材料中的电子和阳离子是载流子。电极汽化在真空中也可以发生,但技术上电弧在真空中不能发生,而是发生在低压电气中;在真空中,如真空电弧或真空管中,自由电子是载流子;在金属中,金属晶格中形成费米气体的电子是载流子。.

查看 熱電效應和载流子

赛贝克效应

赛贝克效应(Seebeck effect)将二种不同金属各自的二端分别连接,并放在不同的温度下,就会在这样的线路内发生电流。这种现象称为赛贝克效应。它是德国物理学家于1821年发现的。 不同的金属(或半导体)具有不同的(所产生赛贝克效应大小不同),半導體與金屬的主因略有不同。半导体在不同的溫度下具有不同的载流子密度,當單一半导体兩端具有溫度差時,載子會扩散以消除密度的差异,因而造成電動勢。兩端的温度相差越大,则产生的赛贝克电位差越大。而金屬的自由电子密度與費米能階幾乎不會隨溫度改變,因此金屬的赛贝克效应遠小於半導體。金屬的赛贝克效应由電子的平均自由程來決定。若平均自由程隨溫度上升,則熱端的自由電子有較高的機會向冷端移動,此時的塞貝克係數為負值。反過來說,若電子的平均自由程隨溫度上升而下降,則冷端的自由電子有較高的機會流向熱端,塞貝克係數為正值。 將兩種不同的金屬連接,並在兩接點給予溫度差,兩種金屬會分別產生各自的温差电动势。选用适当的二种不同金属,利用赛贝克效应可以测量温度;还可利用不同温度进行特别的发电。若使用相同的金屬形成迴路,則會因為溫差造成的電動勢互相抵銷而無法觀察到赛贝克效应。.

查看 熱電效應和赛贝克效应

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

查看 熱電效應和金属

汤姆森效应

汤姆森效应(Thomson effect):将一根导线通恒定电流,由于导线有电阻而发热。再将这根带电的导线的某小局部加热;使它产生温度梯度。这根导线就在原有发热的基础上,出现吸热或放热的现象。 一個金屬(或半導體)材料的帕爾帖係數並不是一個定值,也會隨著溫度而改變。在一個具有溫度梯度的導體中,每個位置都可以視為是具有不同帕爾帖係數的材料。當電流通過時,不同的位置會各自產生帕爾帖效應,造成局部的吸熱或放熱。由於金屬的熱導率較高,這些局部的吸收或放出的热能會分散至整個導體,因而造成導體整體的吸熱或放熱。 吸热或放热要由恒定电流的方向和导线热梯度的方向而决定。这种现象称为汤姆森效应。汤姆森效应不在开始时均匀温度的通电流导体中出现。汤姆森效应是英国物理学家威廉·汤姆森于1854年发现的。.

查看 熱電效應和汤姆森效应

汉斯·奥斯特

汉斯·克海斯提安·奥斯特(Hans Christian Ørsted,),丹麦物理学家、化学家和文學家。在物理學領域,他首先发现載流導線的電流會產生作用力於磁針,使磁針改變方向。在化學領域,他發現了鋁元素。十九世紀後期,在科學方面的後康德哲學和演進,由於他的寫作而更見雛形。他創建了「思想實驗」這名詞,他也是第一位明確地描述思想實驗的現代思想家。.

查看 熱電效應和汉斯·奥斯特

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

查看 熱電效應和温度

另见

热电

亦称为 塞贝克效应。