我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

先天免疫系統

指数 先天免疫系統

先天性免疫(innate immunity)又稱為「非特异性免疫」、「固有免疫」、「非專一性防禦」,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异地识别并作用于病原体。与後天免疫系統不同,先天免疫系统不会提供持久的保护性免疫,而是作为一种迅速的抗感染作用存在于所有的动物和植物之中。.

目录

  1. 87 关系: 动物原生動物原核生物假丝酵母属单核细胞后天免疫系统寄生虫巨噬细胞中性粒细胞主要组织相容性复合体化学信使包涵体分枝杆菌属前列腺素囊腫性纖維化噬菌体皮膚神經元立克次体篮氏贾第鞭毛虫綠膿桿菌红血球结缔组织细菌细胞凋亡细胞因子细胞程序性死亡细胞膜缓激肽真菌病原病毒炎症生物薄膜甲基化片利共生白三烯白血球隱球菌屬鏈球菌屬补体系统血小板血管舒張调理素贅生物趋化因子麻疹軍團菌屬鼻病毒... 扩展索引 (37 更多) »

动物

動物是多細胞真核生命體中的一大類群,統稱為動物界。動物身體的基本形態會隨著其發育而變得固定,通常是在其胚胎發育時,但也有些動物會在其生命中有變態的過程。 大多數動物能自發且獨立地移動探索,只有極少數的動物(如珊瑚)是固定在一點無法移動。動物行為學是研究動物行為的科學,較著名的行為理論為康納德·洛倫茨提出的本能理論。 已發現的動物化石,多是在五億四千萬年前的寒武紀大爆發時的海洋物種。.

查看 先天免疫系統和动物

原生動物

原生动物是原生生物當中較接近動物的一類,简称原虫。由单细胞所组成,异养生活,能够运动。但是有些物种介于植物和动物之间,如眼虫,因为它们能进行光合作用;它们又能运动,并像真正的动物那样进食。动物中排除原生动物,剩下的多细胞动物被称为后生动物。后生动物中有了组织分化的被称为真后生动物。 原虫很微小,一般只能通过显微镜才能看到。但在马里亚纳海沟发现的一类有孔蟲門原蟲:en:Xenophyophores,直径可以达到20厘米,為最大的原生動物。经记录的原生动物约有50000种,其中大约有20000种为化石种。 按照支序分類學說的觀點,原生動物是真核生物除去多細胞動物、植物、真菌之外的部分,爲併系群,且區分動植物的標準——運動和光合作用均與生物演化分類無關。光合作用並非真核生物的原始屬性,而是分別通過一次或多次内共生來實現的,各個營光合作用的種類彼此間並無親緣關係。因此原生動物只是一個集合概念,而不應作爲生物分類的單元。原生動物现在被更准确地划分在一个单独的界:原生生物.

查看 先天免疫系統和原生動物

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N.

查看 先天免疫系統和原核生物

假丝酵母属

假丝酵母(念珠菌)是酵母中的一属,这一属中的许多物种是动物宿主里面的寄生物,人类自然也是它们的宿主之一。虽然通常它们都是以共生体的形式与宿主和平共处,但某些假丝酵母可能会导致疾病。临床上发现,假丝酵母中最常见的是白色念珠菌,它们通常会感染人类和其它动物,导致出现鹅口疮(又叫念珠菌病),尤其在免疫力低下的病人身上发生。许多假丝酵母的成员都是动物肠道中常见的菌种,包括存在于哺乳动物宿主身上的白色念珠菌,而其它的则是在昆虫体内共生。通常这一属中的菌种也叫做念珠菌,例如白色念珠菌、热带念珠菌等。 过去十年里,由于免疫力低下的病患数量增加,同时因为这类病患身上的机会感染主要是由假丝酵母属菌种导致的,因此我们已经看到有针对性地药物治疗变得越来越重要。于此同时,假丝酵母属中的某些品种已经完成了测序,因此我们有机会得以借助后基因时代的方法,来仔细研究它们的一些生物学特征。通过这种研究(包括致病性的假丝酵母以及相关的其它酵母品种),我们已经得到一些知识使得我们可以创造革命性的抗真菌治疗方法,独创性的特异免疫干涉疗法,以及真菌感染的高灵敏度诊断方法。有些另类医学的实践者认为,假丝酵母的过度繁殖可以导致从疲劳到增重的许多健康问题,然后这并没有任何证据可以支持这种理论,因此绝大多数医生不相信这种说法。 南极假丝酵母是一种工业脂肪分解酶的来源。.

查看 先天免疫系統和假丝酵母属

单核细胞

单核细胞(Monocyte)是人体免疫系统中的一种白细胞。其在人体免疫系统内有两种作用:一,补充正常状态下的巨噬细胞和树状细胞;二,在有炎症信号下,单核细胞会在8到12小时快速聚集到感染组织,并分化出巨噬细胞和树状细胞产生免疫反应。.

查看 先天免疫系統和单核细胞

后天免疫系统

後天性免疫(adaptive immunity)也稱為獲得性免疫、適應性免疫、特異性免疫、專一性防禦,是一種經由與特定病原體接觸後,產生能識別並針對特定病原體啟動的免疫反應。和後天性免疫相對的是先天性免疫。後天免疫系統主要存在於有頜下門的脊椎動物中,近年來也在細菌以及古菌中發現,即 CRISPR/Cas 系統。脊椎動物的後天免疫系統可粗略分為體液免疫和细胞免疫。.

查看 先天免疫系統和后天免疫系统

寄生虫

寄生虫()指一種生物,將其一生的大多數時間居住在另外一種生物體內,且會危害被居住的生物體的生理機能,被寄居的生物則稱為宿主或寄主。寄生蟲會在宿主或寄主体内或附著於體表以获取维持其生存、发育或者繁殖所需的营养或者庇护。除此之外,还有一种叫拟寄生物(Parasitoidism)的种间关系,多见于昆虫,寄生虫的母体利用寄主体内作为卵孵化的场所,吸取寄主营养。这种寄生方式会导致寄主死亡,其关系类似于捕食关系。以生态学种间关系来看,寄生是发生关系的双方中弱小的一方得益,占優勢的一方受损的关系。寄生虫所包括的生物种类繁多,一般都為原生生物、无脊椎动物、脊椎动物。 在社会學领域中,寄生虫也被用作泛指一些依靠别人、自己不肯努力的人。.

查看 先天免疫系統和寄生虫

巨噬细胞

巨噬細胞(macrophage,縮寫為mφ)是一種位於組織內的白血球,源自單核球,而單核球又來源於骨髓中的前體细胞。巨噬細胞和單核球皆為吞噬細胞,在脊椎動物體內參與非特異性防衛(先天性免疫)和特異性防衛(细胞免疫)。它們的主要功能是以固定細胞或游離細胞的形式對細胞残片及病原體進行噬菌作用(即吞噬以及消化),并激活淋巴球或其他免疫細胞,令其對病原體作出反應。.

查看 先天免疫系統和巨噬细胞

中性粒细胞

中性粒细胞(Neutrophil或 Neutrophil granulocyte)是血液白细胞的一种,也是哺乳动物血液中最主要的一种白细胞。中性粒细胞在非特异性免疫系统中有着非常重要的作用。 用蘇木精-伊紅染色时,中性粒细胞的染色颗粒为粉红中性。.

查看 先天免疫系統和中性粒细胞

主要组织相容性复合体

主要组织相容性复合体(major histocompatibility complex,MHC),又称主要组织相容性複合基因,是存在于大部分脊椎动物基因组中的一个基因家族,与免疫系统密切相关,其中人類的MHC醣蛋白,又稱為人類白血球抗原(英語:human leukocyte antigen,簡稱HLA)。其中有兩類,第一類MHC處理細胞內部被分解後的蛋白質(例如病毒的)、第二類MHC則要經過胞吞並利用溶酶體處理(外部來源),MHC這些再跟這些小片胜肽結合,並呈現在細胞表面上供T細胞所辨識。調控的DNA位於6號染色體上(6p21.31),包括一系列緊密連鎖的基因座,它們與人類的免疫系統功能密切相關。其中部分基因編碼細胞表面抗原,成為每個人的細胞不可混淆的「特徵」,是免疫系統區分本身和異體物質的基礎。 HLA复合体位于6号染色体短臂上的21.31区(6p21.31),由360万个碱基对组成,是目前已知的人类染色体中基因密度最高,也是多态性最为丰富的区域,故有「人類體內的化學指紋」之稱。.

查看 先天免疫系統和主要组织相容性复合体

化学信使

化学信使(chemical messenger)是指可以传递信号的化学物质,其可能指的是:.

查看 先天免疫系統和化学信使

包涵体

包涵体(inclusion bodies),或包含体,是无定形的蛋白质的聚集,不被任何膜所包围。细胞破碎后,包涵体呈颗粒状,致密,低速离心就可以沉淀。包涵体难溶于水中,在变性剂溶液(如盐酸胍、脲)中才能溶解。在这些溶液中,溶解的蛋白质呈变性状态,即所有的氢键、疏水键全被破坏,疏水侧链完全暴露,但一级结构和共价键不被破坏。因此当除去变性剂时,一部分蛋白质可以自动折叠成具有活性的正确构型,这一折叠过程称为蛋白质的复性。 包涵体主要由蛋白质构成,其中大多是基因表达产物。这些基因表达产物没有生物活性。为此,欲获得天然活性态的目标产物,必需分离包涵体后,溶解包涵体并使其中的目标蛋白恢复应有的天然活性。所以,包涵体的出现不仅增加了生化工程师生物分离设计的难度,也为生物化学家的蛋白质折叠(protein folding)机理研究提出了新的课题。 重组DNA技术为大规模生产目标蛋白质提供了崭新的途径,开辟了现代生物技术发展的新纪元。但是,人们在分离纯化基因工程表达产物时遇到了意想不到的困难,很多利用大肠杆菌为宿主细胞的外源基因表达产物(如尿激酶、人胰岛素、人生长激素、白细胞介素-6、人γ-干扰素等)不仅不能分泌到细胞外、而且在细胞内凝聚成没有生物活性的固体颗粒-包涵体(inclusion bodies IBs)。.

查看 先天免疫系統和包涵体

分枝杆菌属

分枝杆菌屬(Mycobacterium)為放线菌门下的一個屬,且為分枝桿菌科唯一的屬。 该属细菌包括许多已知在哺乳類动物中造成严重疾病的病原菌,包括结核杆菌(Mycobacterium tuberculosis)和麻风杆菌(Mycobacterium leprae)。 希臘語中的 myco 表示「真菌」,意思是說該屬的物種通常在液態培養基的表面,形成類似黴菌的菌落。.

查看 先天免疫系統和分枝杆菌属

前列腺素

前列腺素(Prostaglandin,简称:PG)是一类具有五元脂肪环、带有两个侧链(上侧链7个碳原子、下侧链8个碳原子)的20个碳的酸。是一类激素。.

查看 先天免疫系統和前列腺素

囊腫性纖維化

囊肿性纤维化(Cystic Fibrosis,CF),亦稱為囊性纤维化、囊腫性纖維變性、囊腫纖維症、纖維性囊腫或囊纖維變性,是一种常见的遺傳疾病,此病症最常影響肺臟,但也常發生於胰臟、肝臟、腎臟,以及腸。長期影響包含肺部感染所導致的呼吸困難以及積痰 -->,其他可能的症狀包括鼻竇炎、發育不良、、、男性不孕,以及其他症狀 -->。每個人的症狀不盡相同。 囊腫性纖維化為體染色體隱性遺傳疾病 -->,发生突变的结果在230 kb的基因,基因位于染色体7q31,要在兩條(CFTR)等位基因的突變時才會發病。只有一個突變基因的人是帶因者(carriers),通常沒有任何顯著症狀。CFTR與汗液、消化液、體液和黏液分泌有關。當CFTR失去功能時,原先分泌較少的位置分泌量會增加。診斷方面可利用和基因檢測進行,有些地區會對此疾病進行新生兒篩檢。 目前尚無可治癒囊腫性纖維化的療法,若是肺部感染,則多以抗生素進行治療,給予方法可分為靜脈注射、吸入式或口服 -->,有時會長期使用像阿奇霉素之類的長效型抗生素 -->,噴霧吸入型的有高張食鹽水和沙丁胺醇也非常有效 -->。如果肺部功能持續惡化,則優先考慮進行 -->。胰脂肪酶以及脂溶性維生素的支持療法對於年輕患者來說是相當重要的 -->,許多病患使用像是的來對抗囊腫性纖維化,然而目前仍沒有足夠的證據支持療效。在已開發國家,囊腫性纖維化的患者平均壽命約在42到50歲,有80%的肺疾患者是因為囊腫性纖維化而死亡。 囊腫性纖維化常見於擁有北歐血統的人,約每3000位新生兒中就有1人患病大約25人裡會有1人為帶因者,阿什肯納茲猶太人也常出現這類的疾病。而在非裔與亞裔人口中較為罕見。本疾病最早的紀錄可以追溯至1595年,但一直到1938年,桃樂絲·安得森才首次將囊腫性纖維化定義為一種疾病。1989年時由分子遺傳學家徐立之教授成功發現囊胞狀纖維症的病因。囊腫性纖維化的英文cystic fibrosis講述的是發生在胰臟的纖維化與囊腫。.

查看 先天免疫系統和囊腫性纖維化

噬菌体

噬菌体(bacteriophage)是病毒的一種,其特別之處是專以細菌為宿主,較為熟知的噬菌體是以大腸桿菌為寄主的T2噬菌體。 跟別的病毒一樣,噬菌體只是一團由蛋白質外殼包裹的遺傳物質,大部分噬菌體還長有「尾巴」,用來將遺傳物質注入宿主體內。超過95%已知的噬菌體以雙螺旋結構的DNA為遺傳物質,長度由5,000個碱基对到5,000,000個碱基对不等;餘下的5%以RNA為遺傳物質。正是通過對噬菌體的研究,科學家證實基因以DNA為載體。(见赫希-蔡斯实验)整個噬菌體的長度由20納米到200納米不等。它們的基因組可含有少至四個、多至數百個基因。在注射其基因組進入細胞質後,噬菌體在細菌內複製。噬菌體是在生物圈中最常見的和多樣化的實體。 噬菌體是一種普遍存在的生物體,而且經常都伴隨着細菌。通常在一些充滿細菌群落的地方,如:泥土、動物的內臟裡,都可以找到噬菌體的蹤影。目前世上蘊含最豐富噬菌體的地方就是海水。在海平面,平均每毫升的海水即含有9×108個病毒粒子(virions),並使海水中70%的細菌受到噬菌體的感染。 噬菌体的命名是由希腊语词汇“吞噬”(φαγεῖν)的首字母Φ開始,然後加上一組序號。 在蘇聯、中歐和法國,噬菌體都曾用作抗生素的替代品,作為醫療用品的時間超過90年。英国广播公司 地平线系列(1997年):The Virus that Cures,一部关于噬菌体药物的纪录片。噬菌體治療已經被更多國家的醫師接受,它們被看作是對於許多細菌的菌株可能的治療。.

查看 先天免疫系統和噬菌体

皮膚

膚,包住脊椎動物的軟層,是組織之一,在人體是最大的組織。皮膚擋住外來侵入,亦保住水分。有保暖、阻隔、感覺之用。 皮膚的作用因物種而異,有保暖、保護色、吸引異性等作用。各物種的皮有厚有薄,厚皮叫革。皮膚是表皮系統的一部份,是動物最大的器官系統,由多層外胚層的组织構成,可保護內部的肌肉、骨骼、韌帶及其他內部的器官。有的物種,例如魚類和爬蟲類,會生鱗保護。鳥類會生羽毛保護。兩棲動物的皮膚是交換氣體的器官。所有哺乳動物的皮膚都有毛,即使看似無毛的海洋哺乳動物其實也有毛。 皮膚的重要性在於其為身體和外界環境的介面,而且是防禦外來影響的第一道防線。例如皮膚在保護身體免受病原影響。Proksch E, Brandner JM, Jensen JM.

查看 先天免疫系統和皮膚

神經元

经元(neuron),又名神经原或神经细胞(英語:nerve cell),是神经系统的结构与功能单位之一。神经元能感知环境的变化,再将信息传递给其他的神经元,并指令集体做出反应。神經元佔了神經系統約10%,其他大部分由膠狀細胞所構成。基本構造由樹突、軸突、髓鞘、細胞核組成。傳遞形成電流,在其尾端為受體,藉由化學物質(化学递质)傳導(多巴胺、乙醯膽鹼),在適當的量傳遞後在兩個突觸間形成電流傳導。 人脑中,神经细胞约有860亿个。其中约有700亿个为小脑颗粒细胞(cerebellar granule cell)。.

查看 先天免疫系統和神經元

立克次体

立克次体(学名:Rickettsia),或者称立克次氏体是一类细菌,但许多特征和病毒一样,如不能在培养基上培养,可以通过瓷濾器过滤,只能在动物细胞内寄生繁殖等。直径只有0.3-1μm,小于绝大多数细菌。立克次体有细胞形态,除恙虫病立克次体外,细胞壁含有细菌特有的肽聚糖。细胞壁为双层结构,其中脂类含量高于一般细菌,无鞭毛。同时有DNA和RNA两种核酸,但没有核仁及核膜,属于适应了寄生生活的α-变形菌,經研究粒線體的祖先可能是由立克次體演化而來。革兰染色呈阴性,效果不明显。立克次体取名是为了纪念美国病理学家霍華德·泰勒·立克次(Howard Taylor Ricketts,1871年2月9日 - 1910年5月3日),立克次在芝加哥大学工作期间发现了落磯山斑點熱和鼠型斑疹伤寒的病原体(立克次体)和传播方式,由于工作原因,他自己也死于斑疹伤寒。他所发现的病原体被命名为立克次体属。.

查看 先天免疫系統和立克次体

篮氏贾第鞭毛虫

#重定向 兰氏贾第鞭毛虫.

查看 先天免疫系統和篮氏贾第鞭毛虫

綠膿桿菌

綠膿桿菌,又稱銅綠假單胞菌(學名:Pseudomonas aeruginosa),是一種革蘭氏陰性菌、好氧、呈長棒形的細菌,只有單向的運動性。牠是一種機會性感染細菌,且對植物亦是機會性感染的。 與其他假單胞菌屬的細菌一樣,綠膿桿菌分泌多種的色素,包括綠膿菌素(呈青色)、螢光素(呈螢光黃色)及綠膿菌紅素(呈啡紅色)。假單胞菌屬培養基P就是用作增加綠膿菌素及綠膿菌紅素的生產,而假單胞菌屬培養基F就是加強螢光素的生成。 綠膿桿菌的特徵是牠那如珠母般的外形及在試管內的葡萄氣味。臨床確認綠膿桿菌的方法是在於綠膿菌素及螢光素的生成,且在42℃的環境下生長的能力。綠膿桿菌在柴油及航空燃料中仍能生長,更被稱為「氫碳分解菌」,能引發微生物腐蝕作用。牠會產生一種暗色的凝膠墊,一般被誤解為藻類。.

查看 先天免疫系統和綠膿桿菌

红血球

红血--球(Red blood cells (RBCs)),又称为红--细胞或血红--细胞,是血液中数量最多的一种血球,同时也是脊椎动物体内通过血液将氧气从肺或鰓运送到身体各个組织的最主要的媒介。破裂中的红血球或其碎片则称为裂红--细胞(schistocyte)。.

查看 先天免疫系統和红血球

结缔组织

結締組織(connective Tissue)爲脊椎動物基本組織之一,由細胞和大量細胞外基質組成。廣義上的結締組織包括固有結締組織、軟骨組織和骨組織、血液以及淋巴。一般所指的結締組織指固有結締組織。其中,固有結締組織又分爲疏鬆結締組織(蜂窩組織)、、脂肪組織,以及。 結締組織在生物體內起連接、支持、營養、運輸和保護等作用。在胚胎發育中,結締組織係由中胚層的間充質發育而來。.

查看 先天免疫系統和结缔组织

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

查看 先天免疫系統和细菌

细胞凋亡

细胞凋亡(apoptosis,源自απόπτωσις,有堕落,死亡之意),為一種細胞程序性死亡。相对于细胞坏死(necrosis),细胞凋亡是细胞主动实施的。細胞凋亡一般由生理或病理性因素引起。而細胞壞死則主要為缺氧造成,两者可以很容易通过观察区分开来。在细胞凋亡过程中,细胞缩小,DNA被核酸内切酶降解成180bp-200bp片段屬於有層次之斷裂,(可以通过凝胶电泳证明),而细胞坏死时,细胞肿胀,细胞膜被破坏,通透性改变。细胞器散落到细胞间质,需要巨噬细胞去清除,结果是该局部组织发炎。相比起细胞坏死,细胞凋亡是更常见的细胞死亡形式。 细胞凋亡受到抑凋亡因子和促凋亡因子的调控。.

查看 先天免疫系統和细胞凋亡

细胞因子

细胞因子,也翻译为細胞激素(cytokine),是一组蛋白质及多肽,在生物中用作信号蛋白。这些类似激素或神经递质的蛋白用作细胞间沟通的信号。细胞因子多是水溶性蛋白和糖蛋白,分子量小(8-30千道耳顿)。 细胞因子可以由多种细胞释放,尤其重要的是在先天性免疫反应和适应性免疫反应。由于其免疫系统中的作用,细胞因子参与免疫性疾病、炎症及传染性疾病。不过,并非所有的功能仅限于免疫系统,细胞因子还涉及多个胚胎發育环节。 细胞因子是由多种细胞类型(如造血性和非造血细胞)产生。并能对邻近细胞或整个机体有作用。这些效应强烈依赖于其他化学因子和细胞因子的存在。.

查看 先天免疫系統和细胞因子

细胞程序性死亡

细胞程序性死亡是一种多细胞生物中的细胞按照预定的程序集体自杀的行为。它包括细胞凋亡和自噬两类。 细胞程序性死亡与细胞坏死不同。.

查看 先天免疫系統和细胞程序性死亡

细胞膜

细胞膜,又称原生質膜(英語:cell membrane),为细胞結構中分隔细胞内、外不同介质和组成成份的界面。原生質膜普遍认为由磷脂質双层分子作为基本单位重复而成,即磷脂双分子层,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。原生質膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生質膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。.

查看 先天免疫系統和细胞膜

缓激肽

缓激肽(Bradykinin)是引起血管扩张的一种肽,因此导致血压降低。一类名叫ACE抑制药的用于降血压的药物会增加缓激肽的浓度(通过抑制其降解)进而降低血压。缓激肽是通过释放前列环素、一氧化氮以及内皮衍生的超极化因子作用于血管的。 缓激肽是一种具生理学与药理学活性的肽,是蛋白质的激肽类成员之一,由九个氨基酸组成。.

查看 先天免疫系統和缓激肽

真菌

真菌即真菌界(学名:Fungi)生物的通称,又稱菌物界,是真核生物中的一大類群,包含酵母、黴菌之類的微生物,及最為人熟知的菇類。真菌自成一界,與植物、動物和原生生物相區別。真菌和其他三種生物最大不同之處在於,真菌的細胞有含幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。卵菌和黏菌、水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,通常被視為植物學的一個分支。但事實顯示,真菌和動物之間的關係要比和植物之間更加親近。 雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且它們會生活在土壤內、腐質上、以及與植物、動物或其他真菌共生。部分菇類及黴菌可能會在結成孢子時變得較顯眼。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌從很久以前便被當做直接的食物來源(如菇類及松露)、麵包的膨鬆劑及發酵各種食品(如葡萄酒、啤酒及醬油)。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素是由真菌所製造的,並運用在工業上。真菌亦被當做生物農藥,用來抑制雜草、植物疾病及害蟲。真菌中的許多物種會產生有的物質,稱為(如生物鹼和聚酮),對包括人類在內的動物有毒。一些物種的孢子含有精神藥物的成份,被用在娛樂及古代的宗教儀式上。真菌可以分解人造的物質及建物,並使人類及其他動物致病。因真菌病(如)或食物腐敗引起的作物損失會對人類的食物供給和區域經濟產生很大的影響。 真菌各門的物種之間不論是在生態、生物生命周期、及形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有150萬-500萬個物種,其中被正式分類的則只有約5%。自從18、19世紀,卡爾·林奈、克里斯蒂安·亨德里克·珀森及伊利阿斯·馬格努斯·弗里斯等人在分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展開啟了將DNA測序加入分類學的道路,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系统发生学上的研究已幫助真菌界重新分類,共分為一個亞界、七個門、及十個亞門。.

查看 先天免疫系統和真菌

病原

#重定向 病原体.

查看 先天免疫系統和病原

病毒

病毒(virus,中文舊稱“濾過性病毒”)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介於生命体及非生命體之間的有機物種,它既不是生物亦不是非生物,目前不把它歸於五界(原核生物、原生生物、真菌、植物和動物)之中。它是由一个保护性外壳包裹的一段DNA或者RNA,藉由感染的機制,这些简单的有機体可以利用宿主的细胞系统进行自我复制,但无法独立生长和复制。病毒可以感染几乎所有具有细胞结构的生命体。第一个已知的病毒是烟草花叶病毒,由马丁乌斯·贝杰林克于1899年发现并命名,迄今已有超过5000种类型的病毒得到鉴定。研究病毒的科学称为病毒学,是微生物学的一个分支。 病毒由两到三个成份组成:病毒都含有遺傳物質(RNA或DNA,只由蛋白质组成的朊毒體并不属于病毒);所有的病毒也都有由蛋白质形成的衣壳,用来包裹和保护其中的遗传物质;此外,部分病毒在到达细胞表面时能够形成脂质包膜环绕在外。病毒的形态各异,从简单的螺旋形和正二十面體形到複合型结构。病毒颗粒大约是细菌大小的百分之一。Collier pp.

查看 先天免疫系統和病毒

炎症

症反應、炎性反應,俗稱發炎,是指具有血管系统的活体组织对致炎因子及局部损伤所发生的防御性为主的反应,中心环节是血管反应,是生物組織受到外傷、出血或病原感染等刺激,激發的生理反應。其中包括了紅腫、發熱、疼痛等症狀。炎性反應是先天免疫系統為移除有害刺激或病源體及促進修復的保護措施,並非如後天免疫系統般針對特定病源體。炎性反應並非等同於感染,即使很多時發炎是因感染而發生,發炎是生物體對病源體之反應之一。通常情况下,炎症是有益的,是人体的自动防御反应,但是有的时候,炎症可以引起人体自身免疫系統的過敏,進而攻击自身的組織及細胞、如類風濕性關節炎和紅斑狼瘡症等免疫系統過敏病症,免疫系統過敏所生成的COX-2及Interleukin-1 alpha使得軟骨組織疼痛及發炎。 長期發炎可引起一系列疾病,如花粉症、牙周炎、動脈粥樣硬化、類風濕性關節炎,甚至癌症(如膽囊癌),因此炎性反應在正常情況下受生物體緊密監控。 炎性反應可分為急性炎症和慢性炎症。急性炎症是生物體應該有害刺激的初步反應,更多的血漿和白血球(特別是粒細胞)從血液移往受損組織。一連串的生化反應進行傳播並促成進一步的炎性反應,當中牽涉局部的血管系統、免疫系統及受損組織內的各個細胞。慢性炎症引致發炎部位的細胞類型改變,組織的毀滅與修復同時進行。.

查看 先天免疫系統和炎症

生物薄膜

生物薄膜(biofilm),也称作“生物膜”或“菌膜”,是一些微生物細胞由自身產生的(主要爲多糖)所包圍而形成,且附著在浸有液體的惰性或生物表面的,具有結構的群落。.

查看 先天免疫系統和生物薄膜

甲基化

基化(methylation)指向底物引入甲基的过程,一般是以甲基取代氢原子。 在生物系统内,甲基化是经酶催化的,这种甲基化涉及重金属修饰、基因表达的调控、蛋白质功能的调节以及核糖核酸(RNA)加工。重金属修饰可以在生物系统外发生。组织样本的化学甲基化也是组织染色的方法之一。.

查看 先天免疫系統和甲基化

片利共生

#重定向 偏利共生.

查看 先天免疫系統和片利共生

白三烯

白三烯(Leukotriene, LTs)是一类含三个共轭双键的20碳直链羟基酸的总称,是与过敏性反应有关的生物活性物质,其他与过敏性反应有关的生物活性物质包括组胺、缓激肽、血小板活化因子等。白三烯由于最早是在白细胞中发现故而得名。它们在体内的主要作用是引起气管平滑肌的收缩,同时也增加微血管通透性。白三烯的过多释放是引起哮喘和过敏性鼻炎的主要原因之一。白三烯拮抗剂(Leukotriene antagonist)可通过抑制白三烯的产生和活动达到治疗哮喘和过敏性鼻炎的效果。.

查看 先天免疫系統和白三烯

白血球

白血--球,又稱為白細--胞,(拉丁语 leucocytus,來自古希臘語 leukós「白」和 kýtos「中空」;德语 Leukozyt、英语 white blood cell 或 leukocyte,簡稱 WBCs),是血液重要的血细胞。除白血球外,人体血液中还含有紅血球、血小板和血浆。 白血球作为免疫系统的一部分帮助身体抵抗传染病以及外来的东西。白血球可以由骨髓的造血幹細胞產生。白血球有核,能作变形运动,正常情况下白血球在健康成人体内为4×109到1.1×1010/每升血液。白血球胞作为免疫细胞,在机体发生癌症或其他疾病时,血液内的白血球总数或细胞分类百分比可有变化。 除了在血液外,白血球还存在于淋巴系统、脾,扁桃腺以及身体的其他组织。 由於白血球的异常增生失去控制而引起的一种恶性疾病稱為白血病。.

查看 先天免疫系統和白血球

隱球菌屬

隱球菌屬(学名:Cryptococcus,字面的意思是“隐藏的球体”)是擔子菌門下的一個屬,其下物種為單細胞的酵母菌型。隱球菌屬内的有性型物种是线黑粉菌属(Filobasidiella)内的丝状真菌,而“隱球菌屬”(Cryptococcus)則是用來稱呼這種真菌的無性型物种的。.

查看 先天免疫系統和隱球菌屬

鏈球菌屬

鏈球菌(学名:Streptococcus)是一類球形的革蘭氏陽性細菌,屬於厚壁菌門的一個屬。這些細菌細胞分裂時總是沿一個軸,所以通常成對或者鏈狀的。因爲這些特徵,他們被稱作“鏈球菌”,區別於可以沿多個軸分裂而形成一团細胞的“葡萄球菌”(Staphylococcus)。鏈球菌屬包含了很多個種,其中多數是在人和动物表皮,呼吸道等处的共生菌(commensal flora), 也有对人类有益的菌种如嗜热链球菌(Streptococcus thermophilus),但其中也有相当数量的致病菌种.

查看 先天免疫系統和鏈球菌屬

补体系统

補體系统在無指明情況下,本文中的「補體系統」指人體的補體系統(complement system)由一系列的蛋白質組成,屬先天免疫系統的一部分。補體系統透過一連串的酵素相互切割啟動,最終在目標微生物上形成類似孔洞的膜攻擊複合物(Membrane attack complex,MAC),使微生物破裂而死亡。補體成分能被抗原抗體複合物或者抗體激活,通過、調理、吞噬以及介導炎症反應來清除免疫複合物,表現出相應的生物學功能。 補體系統的出現遠遠早於特異性免疫的出現(早了600-700萬年),最早出現在後口無脊椎動物中。朱爾·博爾代在1890年發現了補體系統。 高等哺乳動物的補體系統有三條活化途徑:經典途徑、替代途徑以及凝集素途徑。在生物的演化過程中,替代途徑應是最早出現的;其次應該是凝集素途徑,而經典途徑應該出現得最晚。.

查看 先天免疫系統和补体系统

血小板

血小板()——又名血栓细胞()——是从巨核细胞上脱落的细胞质小块,具有止血作用。.

查看 先天免疫系統和血小板

血管舒張

血管舒張是指在血管壁的平滑肌鬆弛下,令體內血管擴闊的情況。由於空間增大讓血液流過,這會降低了血壓。它的相反過程稱為血管收縮。 血管舒張可以自然產生或經由血管舒張劑引起。某些肌肉及神經是在體內負責控制血管舒張的,稱為「血管舒縮肌肉/神經」。而血管舒張劑是一種物質能引起血管舒張。多種血管舒張劑被用作讓血液容易流過血栓的藥物,一般使用後都會出現暈紅等情況。.

查看 先天免疫系統和血管舒張

调理素

调理素(Opsonin,来源于opsōneîn,意思是准备进食),是通过标记免疫应答抗原或标记死细胞用于再循环来增强吞噬作用的任何分子。 调理吞噬作用(也称为调理作用)是一种分子机制,通过化学修饰分子,微生物或凋亡细胞与吞噬细胞和NK细胞上的细胞表面受体发生更强的相互作用 。包被在调理素中的抗原,与免疫细胞的结合大大增强。 调理素还通过信号级联从细胞表面受体介导吞噬作用。 调理素以许多机制调节免疫系统。在健康的个体中,他们标记死亡和自噬的自身细胞被巨噬细胞和嗜中性粒细胞清除,激活补体蛋白,并通过自然杀伤(NK)细胞的作用靶向细胞进行破坏。.

查看 先天免疫系統和调理素

贅生物

新生物、息肉或贅生物(neoplasm),是指身體細胞組織不正常的增生,當生長的數量龐大,便會成為腫瘤(tumour)。而腫瘤亦可以是良性或惡性的。 肿瘤(英語:tumor或tumour)在医学上是指细胞的异常病变,而不一定是身体上面的肿块。这一种病变,使身体部分细胞有不受控制的增生,許多時会集结成为肿块。肿瘤分为良性肿瘤、恶性肿瘤。 良性肿瘤生长速度缓慢,表面较光滑。并不侵入邻近的正常组织内。瘤体周围常形成包膜,因此与正常组织分界明显。除非长在要害部位,良性肿瘤一般不会致命,大多数可被完全切除,很少有复发。癌症即是最常见的恶性肿瘤。恶性肿瘤分为上皮源性的“癌”和间质源性的“肉瘤”。在恶性肿瘤中,这一些增生的细胞,除了会集结成为肿块,还会扩散至其他部位增生。 肿瘤细胞与正常细胞相比,有结构、功能和代谢的异常,它们具有超过正常的增生能力,这种增生和机体不相协调。非肿瘤性增生和肿瘤性增生不同,前者常有明显的刺激性因素,且增生限于一定的程度和时间,一旦此因素消除,即不再增生,但如超越一定的限度,发生质变,则也可变为肿瘤性增生。.

查看 先天免疫系統和贅生物

趋化因子

趋化因子(chemokines),也稱做趨化激素、趨化素或是化學激素。是一小分子细胞因子家族蛋白。趋化因子蛋白的共同结构特征包括,分子量小 (约8-10 千道尔顿),有四个位置保守的半胱氨酸残基以保证其三级结构。这些小蛋白因其有定向细胞趋化作用而得名。当然,这些蛋白有些趋化因子历史上还有其他的名字,包括已知的SIS细胞因子家族、 SIG细胞因子家族,SYC细胞因子家族和血小板因子-4家族。有的趋化因子被认为促进炎症反应,而有些趋化因子被认为在正常的修复过程或发育中控制细胞的迁徙。在所有脊椎动物和一些病毒和一些细菌中有趋化因子存在,但不存在于其他无脊椎动物。这些蛋白质结合到趋化因子受体而起作用,趋化因子受体是G蛋白偶联受体,选择性地表达在靶细胞表面。.

查看 先天免疫系統和趋化因子

麻疹

麻疹(拉丁語:Morbilli;德語:Masern;法語:Rougeole;英語:Measles 或 Rubeola;日語:はしか),是未有麻疹疫苗時,一種好發在兒童身上的傳染病,但成人也有一定可能感染。兒童常見的急性病毒是由麻疹病毒引起。此症典型的體徵及症狀包括四天的發燒,及出現咳嗽、鼻炎以及结膜炎的症狀(其英文為cough、coryza及conjunctivitis,也簡稱為三C),伴隨著發燒及紅疹。常見有發燒的症狀,約會持續一週,麻疹的發燒會高達40 °C(104 °F)。 罹患麻疹時,在口中會出現稱為的白點 -->,是麻疹的性症狀,不過只是暫時出現,因此不常看到 。不過在病患的感染力到達高峰之前,醫師若有識別到柯氏斑點,有助於減緩疾病的擴散。 患者多半在有症狀後五天就會開始出現紅色平坦的疹子,一開始常出現在臉部,再擴散到身體的其他部位 。在接觸麻疹者後約十到十二天會有麻疹症狀,會持續七至十天。 病患中有三成會有併發症,像是腹瀉,視力障礙,腦炎及肺炎等疾病。麻疹和風疹(德國麻疹)及小兒急疹是不同的疾病。 麻疹是的一種,所以可輕易藉由已感染者的咳嗽和打噴嚏而傳染給他人 -->,也可藉著唾液或鼻腔分泌物傳播。有九成的人沒有免疫能力下,和麻疹患者共處一室的話,會有極高機率得病 -->,病患在出現紅疹的前後四天都具有傳染力。人們通常一生中只會得一次麻疹。對於疑似病例進行相關檢測是公共衛生防疫上的重要措施。 麻疹疫苗對於預防感染麻疹非常有效 -->,在2000年到2013年全球約有85%的孩童接受疫苗接種 -->,這項政策也使得因麻疹而死亡的人數銳減75%。目前沒有特殊療法可治癒麻疹 -->,仅能对症治疗和预防机会感染,包括補充電解質的、健康的食物以及可以抑制發燒的藥物。若有其他的細菌感染(例如肺炎),可以使用抗细菌药。在发展中國家,會建議補充維生素A。 麻疹每年影響約2千萬人,主要在非洲和亞洲的发展中地區。它造成疫苗可預防疾病中最高的死亡數。它在2013年從1990年的54萬5千例死亡下降到導致約9萬6千人死亡。1980年時估計每年約有260萬人死於麻疹。在美國的免疫接種之前每年有3到4百萬個病例發生。大多數受感染以及死亡者皆小於五歲。受感染者的死亡率大約0.2%,在營養不良者更是可能高達10%。.

查看 先天免疫系統和麻疹

軍團菌屬

軍團菌是一类革兰氏阴性菌,包括造成退伍軍人症的嗜肺军团菌。 軍團菌在許多環境中都很常见,已确定的至少有50个種和70個血清型。该属菌細胞壁取代基所攜帶的基团标识了其体抗原。這些取代基的化學构成,包括其成分的不同以及糖原的不同排列方式,決定了其表面體抗原或是O-抗原的性质,而這正是血清學中对許多革兰氏阴性菌分類的基本手段。 軍團菌的名字源於1976年7月在費城爆发的一种“神秘疾病”,该病共造成221人患病,34人死亡,患者大都为美國退伍軍人,因而被冠名為退伍軍人症。退伍軍人症被廣泛宣傳而造成一定程度的恐慌。1977年1月18日,该病的病原體被確定為一种不為人知的細菌,隨後被命名為軍團菌。.

查看 先天免疫系統和軍團菌屬

鼻,又称鼻子,是陸上動物呼吸的器官,屬呼吸系統一部份,也是許多哺乳類動物感應嗅覺的器官。 鼻一般在動物的頭部,可能是隆起,鼻對體外的開口叫作鼻孔,鼻孔讓空氣進入鼻腔內,兩孔氣流速度不同,且每隔幾小時就會交換一次。鼻有兩腔,被鼻中隔隔開,哺乳類動物的鼻腔內通常長有鼻毛,作用是過濾及吸收空氣中飄浮的塵埃及雜質,鼻腔壁有黏膜,有助於溼潤吸入的空氣,並附著雜質。鼻腔內後部則是鼻竇,位於鼻兩側的顱骨下,是感應嗅覺的神經,鼻腔連接咽喉,並與消化系統共用管道,再分支進入呼吸系統至肺部。 人類的鼻在面部的正中間。 除了動物,鼻亦可用作形容形狀與鼻相近的東西,例如飛機的前端便被稱為機鼻。.

查看 先天免疫系統和鼻

鼻病毒

鼻病毒(學名:rhinovirus,rhino-是希臘文「鼻」的意思)是最常造成一般感冒的病毒(其次為冠狀病毒),因為它會感染鼻子引起發炎而命名的。常見的症狀有發燒、流鼻涕、頭痛等。最适合它生存的温度在33℃到35℃之间,这可以解释它为什么通常在鼻子裡生存,因為鼻腔會接觸到外部的冷空氣,所以溫度會較體溫的37℃低。目前根據其表面的蛋白質種類,已经发现了99种鼻病毒,在自然中通常潛伏存在。它的直径仅仅只有30纳米,比其他病毒小得多(天花病毒可達300纳米),為最小的病毒之一。.

查看 先天免疫系統和鼻病毒

过敏

過敏(ἀλλεργία; 德语、法语: Allergie;allergy, allergic diseases)為人體接觸環境中部分對一般人影響不大的過敏原因子後,所引發的一系列超敏反應現象,人體對於某些過度反應的現象,包含過敏性鼻炎、食物過敏、蕁麻疹、異位性皮膚炎、哮喘與全身型過敏性反應等;症狀可能有紅眼、引起搔癢的皮疹、流鼻水、呼吸困難與腫脹等。食物耐受不佳與食物中毒是兩種不一樣的現象。 常見的過敏原有食物和花粉。金屬和其他物質也可能引發過敏。食物、蚊蟲叮咬和藥物常造成嚴重的過敏反應。症狀的發展同時取決於遺傳和環境。過敏的原始機制是免疫球蛋白E抗體,它是人體免疫系統的一部份,會與過敏原結合,並釋放組織胺等引起發炎的化學物質。過敏的確診通常依據病患的醫療史進行判斷。特定病例必須進行或血液檢驗做進一步判定。然而,檢驗結果為陽性,並不代表所檢驗的過敏原就是引發過敏的單一物質。 在幼年時期,暴露在常見的過敏原也許具有保護作用。美國1997-2011年間對18歲以下兒童進行調查,各年齡組間食物過敏患病率無差異顯著。然而,皮膚過敏隨著年齡的增加而下降,而呼吸道過敏隨著年齡的增加而增加。過敏的治療包括:避開已知的過敏原和使用皮質類固醇與抗組織胺藥。嚴重過敏時,應緊急靜脈注射腎上腺素。所謂的,是一種藉由將病人逐漸暴露在,越來越大量的過敏原下的治療方式,常用在某些特定的過敏疾病,像是乾草熱或是昆蟲叮咬。過敏原免疫療法,對於食物過敏的效果還不清楚。 過敏是相當常見的症狀。在開發中國家,大約20%的人被過敏性鼻炎所困擾,大約6%的人至少有過一次食物過敏的經驗,有將近20%的人,一生之中至少經歷一次異位性皮膚炎。依據國家的不同,有 1%到18%的人有氣喘的症狀,0.05%到2%的人會經歷全身性過敏。許多過敏性的疾病的比例有上升的趨勢。1906年,首次使用「allergy」這個字來命名過敏。 也有一種過敏稱「電視過敏」是因電視看太多所導致的過敏現象。.

查看 先天免疫系統和过敏

郎格罕细胞

#重定向 朗格汉斯细胞.

查看 先天免疫系統和郎格罕细胞

防御素

防御素(defensins)是一種蛋白質,是分子很小(15-20残基)、富含半胱氨酸的阳离子蛋白质,属于抗微生物肽的一类。存在于脊椎动物和无脊椎动物。防御素有很强的抗细菌,真菌和具外套膜病毒作用。它们一般由15-20个氨基酸残基组成,包括6至8个保守的半胱氨酸残基。免疫系统的细胞含有这些肽协助杀死被吞噬的细菌,防御素存于嗜中性粒细胞和几乎所有的上皮细胞。大部分防御素的功能是一电子吸引力穿透微生物细胞膜,一旦嵌入,造成有胞膜不完整而至胞浆外溢。.

查看 先天免疫系統和防御素

葡萄球菌

#重定向 葡萄球菌属.

查看 先天免疫系統和葡萄球菌

肝素

肝素(Heparin),也稱為普通肝素,是一種天然糖胺聚糖抗凝血劑,可用來治療及預防深靜脈血栓、肺栓塞、動脈栓塞,也可用於治療心肌梗塞以及不穩定型心絞痛。通常以靜脈注射方式給藥,也可以應用在採血管以及血液透析機。 使用肝素常見的副作用包括出血、注射部位疼痛以及血小板減少症,嚴重可導致肝素誘發的血小板減少症(HIT)。雖然腎功能不佳者在使用肝素時需要特別留意,但對於孕婦及授乳的媽媽來說肝素是相當安全的。 從1916年發現以來, 肝素已列入世界衛生組織基本藥物標準清單中(能列入這個清單的,都是被認定為健康照護系統中最安全與最有效的藥物)。 在預防用途上,開發中國家的批發價大約是每個月9.63到 37.95 美金;在美國則是25到50美金。另外也有低分子量的肝素。 肝素是一種高度硫化的糖胺聚糖,也是所有生物分子中陰電密度最高的分子。.

查看 先天免疫系統和肝素

肝臟

Labeled human liver 肝脏(英語:liver)為脊椎動物體內的一種器官,以代謝功能為主,並扮演著除去毒素,儲存醣原(肝醣),分泌性蛋白質合成等角色。肝臟也會製造膽汁。在醫學用字上,常以拉丁語字首hepato-或hepatic來描述肝臟。.

查看 先天免疫系統和肝臟

肥大细胞

肥大細胞(mast cell),可分兩種,黏膜肥大細胞(mucosal mast cell)與結締組織肥大細胞(connective tissue mast cell),其中黏膜肥大細胞(MMC)必需依賴T細胞才能增殖。 肥大細胞類似嗜鹼性球,皆含有肝素(heparin)、組織胺、SRS-A及ECF-A。肥大細胞受到過敏原的刺激會發生脫顆粒作用。.

查看 先天免疫系統和肥大细胞

脊椎动物

脊椎动物亚门是脊索动物门下的一个亚门。拉丁文学名是Vertebrata,词根是“vertebra”,意为脊椎骨。目前所知最早的脊椎動物是中國雲南省昆明發現的豐嬌昆明魚,距今約五億三千萬年前。 和節肢動物殼長在體外或軟體動物無骨骼不同,脊椎动物亚门的动物的脊椎都包在骨头里面,是脊索动物门中最大和最先进的亚门。这个亚门的成员拥有的肌肉大多数是一对一对的肌肉。神经系统有一部分在脊梁骨中间。循环系统较完善,有心脏可以促进血液循环。脂肪組織是絕大多數脊椎動物特有的構造,可以使之一段時間不進食,而不會能量耗竭而死。 脊椎动物亚门动物的脊椎是体内骨,有软骨也有硬骨。在动物成长时,这个骨架支持体型。因此脊椎动物可以比无脊动物长得大,而且平均体量也比较大。.

查看 先天免疫系統和脊椎动物

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

查看 先天免疫系統和脱氧核糖核酸

自由基

自由基(英語:Free Radical),又称游离基,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在书写时,一般在原子符号或者原子团符号旁边加上一个“·”表示没有成对的电子。如氢自由基(H·,即氢原子)、氯自由基(Cl·,即氯原子)、(OH·),甲基自由基(CH3·)和四甲基哌啶氧自由基等。自由基极易发生反应(如二聚反应、夺氢反应、氧化反应、歧化反应等)。自由基可以是带正电荷,负电荷或者不带电荷。虽然金属以及它们的离子或者它们的络合物有不成对的电子,但按照常规习惯定义不算是自由基。 除了极个别情况, 大多数的未成对电子形成的自由基都具有较高的化学活性。 自由基反应在燃烧、大气化学、聚合反应、等离子体化学、生物化学和其他各种化学学科中扮演很重要的角色。在化学生物学当中,过氧化物和一氧化氮调节着许多生物过程比如控制血管张力。这样的自由基可以作为一种称为氧化还原信号当中的信使。自由基可被溶剂笼包围。.

查看 先天免疫系統和自由基

自然杀伤细胞

自然殺手細胞(natural killer cell)是一種細胞質中具有大顆粒的细胞,也稱NK细胞(NK cell)。由骨髓淋巴样干细胞發育而成,其分化、发育依赖于骨髓或胸腺微环境,主要分布于外周血和脾脏,在淋巴结和其他组织中也有少量存在。因為其非專一性的細胞毒殺作用而被命名。沒有T細胞與B細胞所具的受體,不會進行受體的基因重組(B細胞、T細胞的V(D)J重組,以及B細胞的)。但仍具有一些特殊受體,稱為“殺傷細胞免疫球蛋白樣受體”,可以活化或抑制其作用在血液中循環,但也在骨髓,脾臟、淋巴結中出現,約佔所有淋巴球的細胞的5~10%,但它可以消滅許多種病原體及多種腫瘤細胞。自然殺手細胞會直接和陌生細胞接觸,並以細胞膜破裂之方式殺死此細胞,可利用分泌穿孔素及腫瘤壞死因子,摧毀目標細胞。 一般认为在外周血单核细胞(PBMC)中分选到CD56+/CD3-的细胞即为NK细胞。.

查看 先天免疫系統和自然杀伤细胞

金黃色葡萄球菌

金黄色葡萄球菌(學名:Staphylococcus aureus)为一种革兰氏染色阳性球型细菌。工业上利用金黄色葡萄球菌制备蛋白质A——抗激素化学分析中的细胞壁组成成分。.

查看 先天免疫系統和金黃色葡萄球菌

腮腺炎

腮腺炎(Parotitis),俗語稱豬頭皮,是指一個或兩個腮腺(人類臉頰兩旁的主要唾腺)發炎的疾病。腮腺是唾腺中最經常發炎的一個部位。.

查看 先天免疫系統和腮腺炎

腸道沙門氏菌

腸道沙門氏菌(學名:Salmonella enterica)是一種有鞭毛的革蘭氏陰性菌及沙門氏菌屬的一員。.

查看 先天免疫系統和腸道沙門氏菌

造血干细胞

造血干细胞(Hematopoietic stem cell)是所有血细胞的原始细胞。所有的血细胞都是由造血干细胞定向分化、增殖而成。 人类的造血干细胞在胚龄第2~3周时开始产生,主要产生造血干细胞的位置在卵黄囊。胚龄第2~3月时,主要产生造血干细胞的位置在肝和脾。胚龄第5个月起,一直到出生之后,主要产生造血干细胞的位置在骨髓。.

查看 先天免疫系統和造血干细胞

限制修飾系統

限制修飾系統(英語:Restriction modification system)是一種存在於細菌(可能還有其他原核生物),可保護個體免於外來DNA(如噬菌體)的侵入。有些細菌體內含有限制酶,可將雙股DNA切斷,之後其他的內切酶再將切下的片段降解,因此能將入侵的外來DNA摧毀。 有些病毒則演化出對抗此系統的機制,它們的DNA經過了甲基化或糖基化的修飾,可阻礙限制酶的作用。另外還有一些病毒,如T3及T7噬菌體,則合成出一些可抑制限制酶的蛋白質。而為了進一步對抗病毒,有些細菌演化出專門辨識並切割已修飾DNA的限制系統。 Category:微生物學 Category:分子遺傳學 Category:免疫系統.

查看 先天免疫系統和限制修飾系統

限制酶

制酶(restriction enzyme)又稱限制內切酶或限制性內切酶(restriction endonuclease),全稱限制性核酸內切酶,是一種能將雙股DNA切開的酶。切割方法是將醣類分子與磷酸之間的鍵結切斷,進而於兩條DNA鏈上各產生一個切口,且不破壞核苷酸與鹼基。切割形式有兩種,分別是可產生具有突出單股DNA的黏狀末端,以及末端平整無凸起的平滑末端。。由於斷開的DNA片段可由另一種稱為DNA連接酶的酵素黏合,因此染色體或DNA上不同的限--片段,得以經由剪接作用而結合在一起。 限制酶在分子生物學與遺傳工程領域有廣泛的應用,此類酵素最早發現於某些品系的大腸桿菌體內,這些品系能夠「限制」噬菌體對其感染,因此得名。科學家認為限制酶是細菌所演化出來對抗病毒感染,並幫助將已殖入的病毒序列移除的機制。是限制修飾系統(restriction modification system)的一部分。約翰霍普金斯大學的丹尼爾·那森斯、漢彌爾頓·史密斯與伯克利加州大學的沃納·亞伯因為限制酶的發現及研究,而共同獲得1978年的諾貝爾生理學或醫學獎。此酵素最早的應用之一,是用來將胰島素基因轉殖到大腸桿菌,使其具備生產人類胰島素的能力。.

查看 先天免疫系統和限制酶

RNA干扰

RNA干扰(RNA interference,缩写为RNAi)是指一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的轉译或转录来抑制基因表达。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。与其它基因沉默现象不同的是,在植物和線蟲中,RNAi具有传递性,可在细胞之间传播,此現象被稱作系統性RNA干擾(systemic RNAi)。在秀丽隐杆线虫上实验时还可使子一代产生基因突变,甚至於可用喂食細菌給線蟲的方式讓線蟲得以產生RNA干擾現象。RNAi现象在生物中普遍存在。2006年,安德鲁·法厄(Andrew Z.

查看 先天免疫系統和RNA干扰

Toll样受体

類鐸受体(Toll-like receptors,缩写TLR,或译为--)是I型跨膜蛋白质,识别侵入体内的微生物进而激活免疫细胞的应答。被认为在先天性免疫系统中起关键作用。類Toll受体是模式识别受体(pattern recognition receptors,PRR)的一类,识别与宿主不同的病原体分子。这些分子被统称为病原相关分子模式(pathogen-associated molecular patterns,PAMP)。但是,也有一些例外情况。在脊椎动物(包括鱼类、两栖类、 哺乳类、鸟类、爬虫类)以及无脊椎动物(如昆虫果蝇已被广泛研究)发现有類Toll受体。在细菌和植物以及更高的生物界中也发现有類Toll受体。所以,類Toll受体是最古老最保守的免疫系统的组成部分,也被称作原始模式识别受体,因为它们在免疫系统的其他部分之前演变, 尤其是在后天免疫系统之前。 「類鐸受體」這個名稱是來自於1985年在黑腹果蠅體內發現的鐸基因。「鐸」來自於的德文的「toll」,為嘆詞。當時研究人員在發現時說出一句「這太棒了!」("Das ist ja toll!"〉,因此而得名。.

查看 先天免疫系統和Toll样受体

抗原

抗原(antigen,縮寫Ag)為任何可誘發免疫反應的物質,不只是從病原體那裡取得,一般來說體內發現分子夠大的有機物就有可能作為一個適合的抗原,這樣也就會導致例如過敏等問題。外來分子可經過B細胞上免疫球蛋白的辨識或經抗原呈現細胞的處理並與主要組織相容性複合體結合成複合物再活化T細胞,引發連續的免疫反應。.

查看 先天免疫系統和抗原

抗原呈現

交叉呈遞是特定抗原呈現細胞吞噬並利用MHC I呈現外來抗原給细胞毒性T细胞的能力。交叉致敏,是交叉呈遞後的結果,其描述的是透過交成呈遞而使變成活化的過程。 這個過程對於大多數對抗腫瘤或病毒的免疫反應是必須的。這些腫瘤或是細胞內的病毒不會感染抗原呈現細胞,反而是感染周邊組織。交叉呈遞對於「蛋白抗原疫苗」引起的免疫保護反應也是需要的,這類疫苗像是癌症疫苗等等。 交叉呈遞是十分重要的,因為他允許了外來抗原的呈現。這些抗原平常時是由樹突細胞利用呈現給抗原呈現細胞,現在發現他們也可透過MHC I呈現。MHC I通常是用來呈現已經感染細胞的內在抗原。然而,利用交叉呈遞的細胞可以利用MHC I路徑來呈現,這樣便可防止細胞被感染,並刺激適應性免疫系統來活化CD-8毒殺T細胞來消滅已經被感染的周邊組織細胞。.

查看 先天免疫系統和抗原呈現

抗体

抗體,又稱免疫球蛋白(immunoglobulin,簡稱Ig),是一种主要由浆细胞分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等病原体的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。抗体能通过其可变区唯一识别特定外来物的一个独特特征,该外来目标被称为抗原。蛋白上Y形的其中两个分叉顶端都有一被称为互补位(抗原結合位)的锁状结构,该结构仅针对一种特定的抗原表位。这就像一把钥匙只能开一把锁一般,使得一种抗体仅能和其中一种抗原相结合。 抗体和抗原的结合完全依靠非共价键的相互作用,这些非共价键的相互作用包括氢键、范德华力、电荷作用和疏水作用。这些相互作用可以发生在侧链或者多肽主干之间。正因这种特异性的结合机制,抗体可以“标记”外来微生物以及受感染的细胞,以诱导其他免疫机制对其进行攻击,又或直接中和其目标,例如通过与入侵和生存至关重要的部分相结合而阻断微生物的感染能力等,就像通緝犯上了手銬和腳鐐一樣。针对不同的抗原,抗体的结合可能阻断致病的生化过程,或者召唤巨噬细胞消灭外来物质。而抗体能够与免疫系统的其它部分交互的能力,是通过其Fc区底部所保留的一个糖基化座实现的 。体液免疫系统的主要功能便是制造抗体。抗体也可以与血清中的补体一起直接破壞外来目标。 抗體主要由一種B细胞所分化出来的叫做漿細胞的淋巴細胞所製造。抗体有两种物理形态,一种是从细胞分泌到血浆中的可溶解物形态,另一种是依附于B细胞表面的膜结合形态。抗体与细胞膜结合后所形成的复合体又被称为B细胞感受器(B Cell Receptor,BCR),这种复合体只存在于B细胞的细胞膜表面,是激活B细胞以及后续分化的重要结构。B细胞分化后成为生产抗体的工厂的浆细胞,或者长期存活于体内以便未来能迅速抵抗相同入侵物的记忆B细胞。在大多数情况下,与B细胞进行互动的辅助型T细胞对于B细胞的完全活化是至关重要的,因为辅助型T细胞负责识别抗原,并促使B细胞能分化出能与该抗原相结合的抗体的浆细胞和记忆型B细胞。而可溶性抗体则被释放到血液等体液当中(包括各种分泌物),持续抵抗正在入侵的外来微生物。 抗体是免疫球蛋白超家族中的一种醣蛋白 。它们是血浆中丙种球蛋白的主要构成成分。抗体通常由一些基础单元组成,每一个抗体包括:两个長(大)的重链,以及两个短(小)的轻链。而輕鏈和重鏈之間以雙硫鍵連接。輕鏈和重鏈又分為可變區和恆定區,而不同类型的重链恆定區,将会导致抗体种型的不同。在哺乳类动物身上已知的不同种型的抗体有五种,它们分别扮演不同的角色,并引导免疫系统对所遇到的不同类型外来入侵物产生正确的免疫反應。 尽管所有的抗体大体上都很相似,然而在蛋白质Y形分叉的两个顶端有一小部分可以发生非常丰富的变化。这一高变区上的细微变化可达百万种以上,该位置就是抗原结合位。每一种特定的变化,可以使该抗体和某一个特定的抗原结合。这种极丰富的变化能力,使得免疫系统可以应对同样非常多变的各种抗原。之所以能产生如此丰富多样的抗体,是因为编码抗体基因中,编码抗原结合位(即互补位)的部分可以随机组合及突变。此外,在免疫种型转换的过程中,可以修改重链的类型,从而制造出对相同抗原專一性的不同种型的抗体,使得同种抗体可以用于不同的免疫系统过程中。.

查看 先天免疫系統和抗体

抗微生物肽

抗微生物肽(Antimicrobial peptides)是先天免疫反应进化过程中相对保守的成分。在所有生物类别都有抗微生物肽。 抗微生物肽是强效的,广谱抗生素,可望成为新型治疗剂。实验证明抗微生物肽能杀死革兰氏阴性菌和革兰氏阳性菌(包括那些对常规 抗生素有抗药性的菌种), 分枝杆菌(包括结核杆菌),具外套膜病毒,真菌,甚至转化的细胞或癌细胞。不同于许多传统的抗生素,抗微生物肽还可以作为免疫调节剂以提高免疫力。.

查看 先天免疫系統和抗微生物肽

李斯特菌

李斯特菌(學名:Listeria monocytogenes),又名單核细胞增生性李斯特菌、李氏菌,是一種兼性厭氧細菌,為李斯特菌症的病原體。它主要以食物為傳染媒介,是最致命的食源性病原體之一,造成二至三成的感染者死亡。李斯特菌在美國每年約引起2500份病例、500人死亡,其中李斯特菌症是導致死亡的主要病因,其致死率甚至高過沙門氏菌及肉毒桿菌。 李斯特菌是革蘭氏陽性菌,屬厚壁菌門,取名自約瑟夫·李斯特。它在30°C以下的環境中具能動性,但通常不耐超過37°C的高溫;而除了以鞭毛運動之外,李斯特菌也能透過肌動蛋白絲狀物的爆炸性聚合(簡稱爆聚),藉真核細胞進行活動,即所謂的「彗尾」(comet tails)或「肌動蛋白火箭」(actin rockets)Gründling, A., Burrack, L.S., Bouwer, H.G.A., Higgins, D.E.

查看 先天免疫系統和李斯特菌

树突

树突(英语:Dendrites)是神经元解剖结构的一部分,为从神经元的细胞本体发出的多分支突起。树突為神经元的输入通道,其功能是將自其他神经元所接收的动作电位(电信号)传送至細胞本体。其他神经元的动作电位藉由位於树突分支上的多个突触传送至树突上。树突在整合自这些突触所接收到的信号、以及决定此神经元将产生的动作电位强度上,扮演了重要的角色。.

查看 先天免疫系統和树突

植物

植物(Plantae)是生命的主要形態之一,並包含了如乔木、灌木、藤類、青草、蕨類及綠藻等熟悉的生物。種子植物、苔蘚植物、蕨類植物和擬蕨類等植物,據估計現存大約有350000個物種。直至2004年,其中的287655個物種已被確認,有258650種開花植物15000種苔蘚植物(参见条目中表格)。綠色植物大部份的能源是經由光合作用從太陽光中得到的。.

查看 先天免疫系統和植物

模式识别受体

模式识别受体为免疫系统细胞表达的,与病原微生物或细胞应激相关的蛋白。可以被模式识别受体识别的微生物特定分子为病原相关分子模式。包括细菌的碳水化合物(如脂多糖和甘露糖);革兰氏阳性菌的肽聚糖和脂磷壁酸,及真菌多糖.

查看 先天免疫系統和模式识别受体

毒素

本文所指的毒素(英語:Toxin),是指生物體所生產出來的毒物(poison),這個術語最早是由有機化學家路德維希(Ludwig Brieger)所提出。這些物質通常是一些會干擾生物體中其他大分子作用的蛋白質,例如蓖麻毒蛋白。由生物體産生的、極少量即可引起動物中毒的物貭。毒素在其嚴重程度差異很大,從一般輕微的急性(如蜂蜇)或是幾乎立即致命的(如肉毒毒素)。 據紅十字國際委員會的審查生物武器公約,“生物毒素是有毒的產品,不像生物製劑,它們是沒有生命的,而不是複製自己的能力。”和“自公約簽署後,不斷有各方面的生物製劑或毒素的定義各方沒有爭議……”.

查看 先天免疫系統和毒素

活性氧

#重定向 活性氧类.

查看 先天免疫系統和活性氧

淋巴细胞

淋巴细胞(lymphocyte),也称--,为白细胞中体积最小的一种,直径6—8微米;在人体约--白细胞的20—30%,圆形细胞核,细胞质很少。 某些疾病可以影响淋巴细胞数目的增减,如患肺结核时,有显著增加。 淋巴细胞是一类具有免疫识别功能的细胞系。按其发生迁移、表面分子和功能的不同,可分为T细胞、B细胞和自然杀伤(NK)细胞。淋巴细胞的膜表面分子(分化群抗原)可用于鉴定和区分其亚群和亚类,是研究淋巴细胞的重要工具。.

查看 先天免疫系統和淋巴细胞

溶组织内阿米巴

溶组织内阿米巴,又稱赤痢變形蟲,學名 Entamoeba histolytica,是一种厌氧的原生动物,属于内阿米巴属。溶组织内阿米巴主要感染人类和其他灵长类动物,估计感染全球总人数约为50万人。许多较早的教科书指出,总计有10%的世界人口被感染,但是后来认识到,这些感染者至少有90%是由于另一个种類痢疾阿米巴(E.

查看 先天免疫系統和溶组织内阿米巴

溶酶体

溶酶体(lysosome),又稱--,存在於細胞(多存在于动物细胞中,植物细胞内不常见)中,是單層膜的囊狀胞器,內部含有數十種從高基氏體送來的水解酶,這些酶在弱酸性環境之下(通常為PH值5.0)能有效分解生命所需的有機物質。.

查看 先天免疫系統和溶酶体

机会性感染

机会性感染又名伺机性感染(opportunistic infection)是指由机会性病原体引发的感染。这些病原体寄生于免疫功能正常的健康宿主时不致病,但会在宿主出现免疫缺陷时入侵宿主。.

查看 先天免疫系統和机会性感染

昆虫

昆虫在分类学上属于昆虫纲(学名:Insecta),是世界上最繁盛的动物,已发现超過100万种。其中單鞘翅目(Coleoptera)中所含的種數就比其它所有動物界中的種數還多。昆字原作。 昆虫的构造有异于脊椎动物,它们的身体并没有内骨骼的支持,外裹一层由几丁质(英文 chitin)构成的壳。这层壳会分节以利于运动,犹如骑士的甲胄。昆虫的身體會分為頭、胸、腹三節,有六隻腿,複眼及一對觸角。昆虫有脂肪體,成分類似脊椎動物的脂肪組織,但作用不同,主要為代謝功能,類似脊椎動物的肝。 昆虫對生態扮演着很非常重要的角色。虫媒花需要得到昆虫的帮助,才能传播花粉。而蜜蜂采集的蜂蜜,也是人们喜欢的食品之一。昆蟲是蜥蜴、青蛙、小型鳥類的重要食物來源。在东南亚和南美的一些地方,昆虫本身就是当地人的食品。 但昆虫也可能對人類產生威脅,如蝗虫會破壞農作物,白蟻破壞木材及建築物。而有一些昆虫,例如蚊子,还是疾病的传播者。 有一些昆蟲能夠藉由毒液或是叮咬會對人類造成傷害,例如虎頭蜂在有人入侵地盤時會以螫針注入毒液等。紅火蟻會分泌有毒物質使接觸動物及人類出現敏感症狀甚至致命。.

查看 先天免疫系統和昆虫

流行性感冒

流行性感冒(Influenza),通常簡稱為流感,為一種由流感病毒造成的傳染性疾病。流感的症狀可輕可重,最常見者為高燒、流鼻水、喉嚨痛、肌肉痠痛、頭痛、咳嗽和疲倦感。患者通常在接觸病毒2天後發病,症狀大多在一週內會解除,但咳嗽可能持續超過兩週。孩童可能會噁心和嘔吐,但這在成人並不常見;噁心和嘔吐更常發生在與流感病毒無關的感染性腸胃炎,有時會不精確地稱此為腸胃型感冒(stomach flu)。流感可能的併發症包括病毒性肺炎、次級細菌性肺炎、鼻竇感染以及造成其他疾病惡化(如氣喘或心臟衰竭)。 可感染人類的流感病毒有--三型。病毒通常由咳嗽,打噴嚏和說話產生的,近距離接觸時尤其容易發生。此外,病毒也可藉由接觸到受染污的物體表面、再碰觸口或眼睛後傳播。受感染的患者無論在發病前後均可能具有傳染性,喉嚨、痰液或鼻黏膜等檢體的病毒測試則可作為確診的依據。目前已有數種快篩方法,然而快篩仍有偽陰性(即使受感染,檢測結果仍顯示為未感染的陰性)的可能。而藉由聚合酶鏈式反應(PCR)檢測病毒RNA則是較準確的檢驗方法。 勤洗手可降低感染流感的風險,因為肥皂可使病毒失去活性。配戴外科口罩亦可預防感染。根據世界衛生組織建議,高風險族群應每年接受流感疫苗注射。流感疫苗通常針對預計會流行的3至4種病毒株設計,接種疫苗很少發生嚴重的併發症。由於病毒RNA突變迅速,疫苗一般僅在當年最為有效。常作為抗流感藥物,其中最常使用的是奥司他韦。目前普遍認為原先健康的人使用克流感(奥司他韦的商品名)似乎弊大於利,而有其他健康問題的流感患者使用克流感也沒有好處。 流行性感冒在世界各地傳播。每年的都造成約300萬至500萬件重病案例,其中有約25萬至50萬名患者死亡。流感在北半球及南半球爆發的季節主要為冬季,赤道附近的國家則會不定時爆發流行。致死的案例多半發生在小孩、老人或同時患有其他健康問題的病人。嚴重而大規模的大流行爆發並不常見。20世紀曾發生過三次極為嚴重且有記錄的全球:1918年流感大流行(因西班牙疫情最嚴重,故又稱西班牙流感)、1958年流感大流行(因起源於中國貴州省,故又稱亞洲流感)和1968年流感大流行(因起源於香港,故又稱做香港流感),三起大流行的死亡人數皆超過百萬人。而21世紀,2009年6月在墨西哥爆發的A型H1N1流感大流行經研究發現為A型流感病毒之突變種造成,該病毒之遺傳組成結合了人類、鳥禽及豬隻的流感病毒基因成分,世界衛生組織將該次疫情的全球流感警告級別提高到第六級(最高等級),該次流行造成超過一萬人死亡。流感病毒也會感染其他動物,豬、馬和鳥類等都在其列。.

查看 先天免疫系統和流行性感冒

无脊椎动物

无脊椎动物(Invertebrate)是背侧没有脊柱的动物,包括棘皮动物、软体动物、腔肠动物、节肢动物、海绵动物、线形动物以及脊索動物門的頭索動物及尾索動物等。其种类数占动物总种类数的95%,是动物的原始形式。无脊椎动物多数体型小,但软体动物门头足纲大王乌贼属的动物体长可达18米,体重约2吨。.

查看 先天免疫系統和无脊椎动物

5-羟色胺

#重定向 血清素.

查看 先天免疫系統和5-羟色胺

亦称为 先天免疫,先天性免疫,先天性免疫系统。

过敏郎格罕细胞防御素葡萄球菌肝素肝臟肥大细胞脊椎动物脱氧核糖核酸自由基自然杀伤细胞金黃色葡萄球菌腮腺炎腸道沙門氏菌造血干细胞限制修飾系統限制酶RNA干扰Toll样受体抗原抗原呈現抗体抗微生物肽李斯特菌树突植物模式识别受体毒素活性氧淋巴细胞溶组织内阿米巴溶酶体机会性感染昆虫流行性感冒无脊椎动物5-羟色胺