目录
互質
互质(英文:coprime,符號:⊥,又稱互素、relatively prime、mutually prime、co-prime)。在數論中,如果兩個或兩個以上的整數的最大公因數是 1,則稱它們為互质。依此定義:.
查看 元因數和互質
元完全數
元完全數(unitary perfect number)是指一整數其元因數的和等於整數的2倍,元因數是一種特殊的因數,一整數n若有元因數d,則d及n/d互質。 有些完全數不是元完全數,而也有些數是元完全數,但不是完全數。 60的元因數有1, 3, 4, 5, 12, 15, 20, 60,元因數和為1 + 3 + 4 + 5 + 12 + 15 + 20 + 60.
查看 元因數和元完全數
充分必要条件
充分必要條件(sufficient and necessary condition)簡稱為充要條件。 在逻辑学中:.
查看 元因數和充分必要条件
因數
因數是一個常見的數學名詞,又名「--」。.
查看 元因數和因數
无平方数因数的数
無平方数因数的数(Square-Free)是指其因數中,沒有一個是平方數的正整數。簡言之,將一個這樣的數予以質因數分解後,所有質因數的冪都不會大於或等於2。例如:54.
查看 元因數和无平方数因数的数
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 元因數和数学
整數數列線上大全
整數數列線上大全(英文:On-Line Encyclopedia of Integer Sequences,縮寫:OEIS)是一個網上可搜索的整數數列資料庫。它是數學上的重要資源,因每篇文章裏都記錄了一個整數數列的首幾個項、關鍵字和鏈結等。截至2015年2月,OEIS已經有超過250,000個數列。.
查看 元因數和整數數列線上大全