目录
大数定律
在數學與統計學中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,樣本數量越多,則其平均就越趨近期望值。 大数定律很重要,因为它“保证”了一些随机事件的均值的长期稳定性。人们发现,在重複試驗中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。 切比雪夫定理的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。.
查看 依概率收敛和大数定律
依分布收敛
#重定向 随机变量的收敛#依分布收敛.
查看 依概率收敛和依分布收敛
随机变量
給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.
查看 依概率收敛和随机变量
极限
极限可以指:.
查看 依概率收敛和极限