目录
大数定律
在數學與統計學中,大数定律又称大数法则、大数律,是描述相当多次数重复实验的结果的定律。根据这个定律知道,樣本數量越多,則其平均就越趨近期望值。 大数定律很重要,因为它“保证”了一些随机事件的均值的长期稳定性。人们发现,在重複試驗中,随着试验次数的增加,事件发生的频率趋于一个稳定值;人们同时也发现,在对物理量的测量实践中,测定值的算术平均也具有稳定性。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一,亦即偶然之中包含着必然。 切比雪夫定理的一个特殊情况、辛钦定理和伯努利大数定律都概括了这一现象,都称为大数定律。.
查看 依概率收敛和大数定律
估计量
在统计学中,估计量是基于观测数据计算一个已知量的估计值的法则:于是估计量(estimator)、被估量(estimand)和估计值(estimate)是有区别的。 估计量用来估计未知总体的参数,它有时也被称为估计子;一次估计是指把这个函数应用在一组已知的数据集上,求函数的结果。对于给定的参数,可以有许多不同的估计量。我们通过一些选择标准从它们中选出较好的估计量,但是有时候很难说选择这一个估计量比另外一个好。.
查看 依概率收敛和估计量
模拟退火
模擬退火是一種通用概率演算法,常用來在一定時間內尋找在一個很大搜尋空間中的近似最優解。模擬退火是S.
查看 依概率收敛和模拟退火