徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

偽數學

指数 偽數學

偽數學(Pseudomathematics)是一種由非數學家所進行的、類似數學之活動形式——且數學家自己也會偶爾這麼做。這個詞是從偽科學一詞(也就是那些被聲稱是科學但其實並不是科學的觀念)轉變而來的。 伪数学活动并不遵循数学的框架、定义、法则、或严谨的正规数学模型。一旦伪数学论证进入了以上领域,比如说接受或引入了一些“著名”的广泛引用的数学定义的话,它就要不可避免地忽视或抛弃一些已成熟或已被证明的数学机制,而变回明显的非数学的论证。 偽數學家所做的努力大致可以廣泛地分成三類:.

24 关系: 印第安纳州三等分角伪科学化圓為方圆规四色定理倍立方科学立方體美國物理学複數證明费马大定理阿尔伯特·爱因斯坦逻辑欧几里得几何正方形永动机未定式无损数据压缩数学数学家

印第安纳州

印第安纳州(State of Indiana)是美国的一个州,它的首府是印第安纳波利斯。印第安纳原意是印第安人的土地的意思。它的缩写是IN。在美国,一个来自印第安纳州的人不被称为印第安纳州人(Indianer),而被称为胡希尔人(Hoosier),在中文裡,这个词一般被译为印第安纳州人。美国海军有多艘战舰以印第安纳州命名。印第安纳州是美国50个州中按面积第38大,按人口第15大的州。印第安纳州也是美国本土阿巴拉契亚山脉以西面积最小的州。印第安纳州的州府和最大城市是印第安纳波利斯,它是美国第二大州府和密西西比河以东最大的州府。 在印第安纳领地建制之前,不同文化的原住民已经在印第安纳这片土地上生活了数千年。是美国保存最好的古代土木工程之一,位于印第安纳州西南埃文斯維爾附近。印第安纳州的居民称为胡希尔人(The Hoosier)。该词来源有争议,但主流看法是该词来源于美国南方高山地区,是一不敬的俚语“土包子”的意思。该看法也为印第安纳州历史局和印第安纳州历史协会认可。 印第安纳州的州名意为印第安人的土地。此名称最早可以追溯到1760年代,当1800年印第安纳领地从西北领地中分离出来单独建制的时候,第一次在美国国会使用。自从印第安纳领地的建制,居民来源就反映出美国东部的地区文化格局。州北部的居民主要来自新英格兰和纽约州,州中部的居民主要来自中大西洋各州和毗邻的俄亥俄州,而南部居民则主要来自南部诸州,主要是肯塔基州和田纳西州。 印第安纳州有非常多元化的经济,2005年州内生产总值为2140亿美元。印第安纳州有数个人口在10万以上的都会区和许多较小的工业城镇。美国2012年人口估算显示,该州总人口数为653.7万。印第安纳州有数个体育球队和体育赛事,包括国家橄榄球联盟的印第安纳波利斯小马队,国家篮球联盟的印第安纳步行者队,国家女子篮球联盟的印第安纳热度队,和印第安納波利斯500赛车,Brickyard 400赛车。印第安纳州有数个大学入选美国新闻与世界报道最好大学2011年排行榜。普渡大学、印第安纳大学和圣母大学为全美前50名的大学,而巴特勒大學、瓦爾帕萊索大學和伊凡斯維爾大學为美国中西部地区大学前10名的大学。.

新!!: 偽數學和印第安纳州 · 查看更多 »

三等分角

三等分角是古希臘平面几何里尺規作圖领域中的著名问题,與化圓為方及倍立方問題並列為尺规作图三大難題。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。三等分角问题的内容是:“能否仅用尺规作图法将任意角度三等分?” 三等分角问题提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案 。随着十九世纪群论和域论的发展,法国数学家首先利用伽罗瓦理论证明,這個問題的答案是否定的:不存在仅用尺规作图法将任意角度三等分的通法。具体来说,汪策尔研究了给定单位长度後,能够用尺规作图法所能达到的长度值。所有能够经由尺规作图达到的长度值被称为规矩数,而汪策尔证明了,如果能够三等分任意角度,那么就能做出不属于规矩数的长度,从而反证出通过尺规三等分任意角是不可能的。 如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,三等分任意角是可能的。然而,作为数学问题本身,由于三等分角问题表述简单,而证明困难,并用到了高等的数学方法,在已證明三等分角问题不可能之後后,仍然有许多人尝试给出肯定的证明。.

新!!: 偽數學和三等分角 · 查看更多 »

伪科学

伪科学(pseudoscience),又称假科學、壞科學、疑似科学,是指任何经宣称为科学,或描述方式看起来像科学,但实际上并不符合科学方法基本要求的知识、缺乏支持证据,禁不起可信性测试,或缺乏科学形式,For example, Hewitt et al.

新!!: 偽數學和伪科学 · 查看更多 »

化圓為方

化圓為方是古希臘数学里尺規作圖领域當中的命題,和三等分角、倍立方問題被並列為尺规作图三大难题。其問題為:求一正方形,其面積等於一給定圓的面積。如果尺规能够化圆为方,那么必然能够从单位长度出发,用尺规作出长度为\pi的线段。 进入十九世纪后,随着群论和域论的发展,数学家对三大难题有了本质性的了解。尺规作图问题可以归结为判定某些数是否满足特定的条件,满足条件的数也被称为规矩数。所有规矩数都是代数数。而1882年,数学家林德曼證明了\pi為超越數,因此也證實該問題僅用尺規是無法完成的。 如果放寬尺规作图的限制或允许使用其他工具,化圆为方的問題是可行的。如借助西皮阿斯的,阿基米德螺線等。.

新!!: 偽數學和化圓為方 · 查看更多 »

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

新!!: 偽數學和圆 · 查看更多 »

圆规

圓規在數學和製圖裏,是用來繪製圓或弧的工具,常用於尺规作图。圓規通常是由金屬製成,包括兩部分,由一個鉸鏈連接着,其中可作調整,其中一邊尖銳是用作圓心,另一邊通常可裝上筆。圓規分普通圓規、彈簧圓規、點圓規、樑規等。現代的圓規則多與三角尺、量角器、直尺等成套裝出售。.

新!!: 偽數學和圆规 · 查看更多 »

四色定理

四色定理是一个著名的数学定理:如果在平面上劃出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;另一个通俗的说法是:每个无外飞地的地图都可以用不多於四种颜色来染色,而且不會有两个邻接的区域颜色相同。被称为邻接的两个区域是指它们有一段公共的边界,而不仅仅是一个公共的交点。例如右图左下角的圆形中,红色部分和绿色部分是邻接的区域,而黄色部分和红色部分则不是邻接区域。 “是否只用四种颜色就能为所有地图染色”的问题最早是由一位英国制图员在1852年提出的,被称为“四色问题”或“四色猜想”。人们发现,要证明宽松一点的“五色定理”(即“只用五种颜色就能为所有地图染色”)很容易,但四色问题却出人意料地异常困难。曾经有许多人发表四色问题的证明或反例,但都被证实是错误的。 1976年,数学家凱尼斯·阿佩爾和沃夫冈·哈肯借助电子计算机首次得到一个完全的证明,四色问题也终于成为四色定理。这是首个主要借助计算机证明的定理。这个证明一开始并不为许多数学家接受,因为不少人认为这个证明无法用人手直接验证。尽管随着计算机的普及,数学界对计算机辅助证明更能接受,但仍有数学家希望能够找到更简洁或不借助计算机的证明。.

新!!: 偽數學和四色定理 · 查看更多 »

倍立方

倍立方是古希腊数学里尺规作图领域當中的著名问题,和三等分角、化圓為方問題被並列為古希臘尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。倍立方问题的内容是: “能否用尺规作图的方法作出一立方体的稜长,使该立方体的体积等于一给定立方体的两倍?” 倍立方问题的实质是能否通过尺规作图从单位长度出发作出\sqrt的问题。 三大難題提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案。随着十九世纪群论和域论的发展,法国数学家首先利用伽罗瓦理论证明,三等分角問題的答案是否定的。运用类似的方法,可以证明倍立方问题的答案同样是否定的。具体来说,给定单位长度後,所有能够经由尺规作图达到的长度值被称为规矩数,而如果能够作出\sqrt,那么就能做出不属于规矩数的长度,从而反证出通过尺规作图作出给定立方体体积两倍的立方体是不可能的。 如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,作出给定立方体体积两倍的立方体是可行的。.

新!!: 偽數學和倍立方 · 查看更多 »

科学

科學(Science,Επιστήμη)是通過經驗實證的方法,對現象(原來指自然現象,現泛指包括社會現象等現象)進行歸因的学科。科学活动所得的知识是条件明确的(不能模棱两可或随意解读)、能经得起检验的,而且不能与任何适用范围内的已知事实产生矛盾。科学原仅指对自然现象之规律的探索与总结,但人文学科也被越来越多地冠以“科学”之名。 人们习惯根据研究对象的不同把科学划分为不同的类别,传统的自然科学主要有生物學、物理學、化學、地球科學和天文學。逻辑学和数学的地位比较特殊,它们是其它一切科学的论证基础和工具。 科学在认识自然的不同层面上设法解决各种具体的问题,强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对自然界的认识偏差的纠正史。因此“科学”本身要求对理论要保持一定的怀疑性,因此它绝不是“正确”的同义词。.

新!!: 偽數學和科学 · 查看更多 »

立方體

立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.

新!!: 偽數學和立方體 · 查看更多 »

美國

#重定向 美国.

新!!: 偽數學和美國 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 偽數學和物理学 · 查看更多 »

複數

#重定向 复数 (数学).

新!!: 偽數學和複數 · 查看更多 »

證明

在數學上,證明是在一個特定的公理系統中,根据一定的规则或标准,由公理和定理推導出某些命題的過程。比起证据,数学证明一般依靠演绎推理,而不是依靠自然归纳和经验性的理据。這樣推導出來的命題也叫做該系統中的定理。 數學證明建立在逻辑之上,但通常會包含若干程度的自然語言,因此可能會產生一些含糊的部分。實際上,用文字形式寫成的數學證明,在大多數情況都可以視為非形式邏輯的應用。在證明論的範疇內,則考慮那些用純形式化的语言写出的證明。這個区别导致了对過往到現在的數學实践、和的大部分检验。數學哲學就關注語言和邏輯在數學證明中的角色,和作為語言的數學。.

新!!: 偽數學和證明 · 查看更多 »

费马大定理

费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.

新!!: 偽數學和费马大定理 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 偽數學和阿尔伯特·爱因斯坦 · 查看更多 »

逻辑

邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.

新!!: 偽數學和逻辑 · 查看更多 »

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

新!!: 偽數學和欧几里得几何 · 查看更多 »

正方形

在平面几何学中,正方形是四邊相等且四個角是直角的四邊形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为。 正方形是二维的超方形,也是二维的正轴形。.

新!!: 偽數學和正方形 · 查看更多 »

永动机

永动机是一类所謂不需外界输入能源、能量或在仅有一个热源的条件下便能够不断运动并且对外做功的机械。历史上人们曾经热衷于研制各种类型的永动机,其中包括达芬奇、焦耳这样的学术大師。在热力学体系建立后,學界認定永动机相悖於热力学基本原理的设想,而將之從正統學術界中排除。然而永动机的研究者始終未曾間斷。从一个侧面也可以认为,人类对永动机的热情以及制造永动机的种种实践,推动了热力学体系的建立和机械制造技术的进步。 1775年法国科学院通过决议,宣布永不接受永动机。现在美国专利及商标局严禁将专利证书授予永动机类申请。 2017年證實了時間晶體的存在,其原子運動無需任何外界能量來維持,符合「永動」的字面定義,但其能量在加入額外的能量前不可能被利用。如果時間晶體的熵不夠高,晶體可能會四散成粒子,因為後者才有更高的熵值,雖然這可能需要很久的時間。.

新!!: 偽數學和永动机 · 查看更多 »

未定式

在微積分和數學分析的其他分支中,未定式(又稱不定式)是指這樣一類極限,其在按極限的運算規則進行代入後,還未能得到足夠信息去確定極限值。这个术语最初由柯西的学生在19世紀中葉提出。常見的未定式有:\frac00,~\frac,~0\times\infty,~1^\infty,~\infty-\infty,~0^0\text~\infty^0。.

新!!: 偽數學和未定式 · 查看更多 »

无损数据压缩

无损数据壓縮(Lossless Compression)指数据经过压缩后,信息不受损失,还能完全恢复到压缩前的原样。「無損」一詞是相對於有損數據壓縮,有損數據壓縮只允許一個近似原始數據進行重建,以換取更好的壓縮率。 無損壓縮通常用於嚴格要求「經過壓縮、解壓縮的資料必須與原始資料一致」的場合。典型的例子包括文字文件、程式執行檔、程式原始碼。有些圖片檔案格式,例如PNG和GIF,使用的是無損壓縮。其他例如TIFF、MNG則可以採用無損或有損壓縮。無損音訊格式最常用於歸檔或製作用途。有損音訊格式則常用於攜帶型播放器或儲存空間受限制的裝置,或不要求音訊完全還原的情況。.

新!!: 偽數學和无损数据压缩 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 偽數學和数学 · 查看更多 »

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

新!!: 偽數學和数学家 · 查看更多 »

重定向到这里:

伪数学家

传出传入
嘿!我们在Facebook上吧! »