我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

交错级数判别法

指数 交错级数判别法

交错级数审敛法是证明无穷级数收敛的一种方法.该方法最早由戈特弗里德·莱布尼茨发现,因此该方法通常也称为莱布尼茨判别法或莱布尼茨准则. 具有以下形式的级数 其中所有的an 非负,被称作交错级数.如果当n趋于无穷时,数列an的极限存在且等于0,并且每个an小于或等于an-1(即,数列an是单调递减的),那么级数收敛.如果L是级数的和 那么部分和 逼近L有截断误差.

目录

  1. 8 关系: 单调函数单调收敛定理交错级数级数狄利克雷判别法负数戈特弗里德·莱布尼茨数列

  2. 审敛法

单调函数

在数学中在有序集合之间的函数是单调(monotone)的,如果它们保持给定的次序。这些函数最先出现在微积分中后来推广到序理论中更加抽象结构中。尽管概念一般是一致的,两个学科已经发展出稍微不同的术语。在微积分中,我们经常说函数是单调递增和单调递减的,在序理论中偏好术语单调、反单调或序保持、序反转。.

查看 交错级数判别法和单调函数

单调收敛定理

在数学中,有许多定理称为单调收敛定理;这里我们介绍一些主要的例子。.

查看 交错级数判别法和单调收敛定理

交错级数

交错级数是形如\sum_^\infty (-1)^n\,a_n的级数(an ≥ 0)。格兰迪级数是交错级数中a_n.

查看 交错级数判别法和交错级数

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

查看 交错级数判别法和级数

狄利克雷判别法

利克雷判别法是一个级数审敛法,以数学家约翰·彼得·狄利克雷命名。 给定两个实数级数\和\,如果级数满足 其中M是某个常数,那么级数 收敛。 狄利克雷判别法的一个推论,是更加常用的交错级数审敛法: 另外一个推论是当\是一个趋于零的递减数列时, \sum_^\infty a_n \sin n 收敛。.

查看 交错级数判别法和狄利克雷判别法

负数

负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负數也是一個不可數的無限集合。這個集合在数学上通常用粗體R−或\mathbb^-来表示。负数与0统称非正数。.

查看 交错级数判别法和负数

戈特弗里德·莱布尼茨

戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.

查看 交错级数判别法和戈特弗里德·莱布尼茨

数列

数列(Sequence of number)是一组兩個以上按顺序排列的数(由數組成的序列),记为\\,\!。\.

查看 交错级数判别法和数列

另见

审敛法