徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

单调收敛定理

指数 单调收敛定理

在数学中,有许多定理称为单调收敛定理;这里我们介绍一些主要的例子。.

13 关系: 可测函数实数序列勒貝格積分勒贝格控制收敛定理简单函数级数法图引理有界有限集合最大下界最小上界公理测度

可测函数

可测函数是可测空间之间的保持(可測集合)結構的函数,也是勒貝格積分或實分析中主要討論的函數。数学分析中的不可测函数一般视为病态的。 如果Σ是集合X上的σ代数,Τ是Y上的σ代数,则函数f: X → Y是Σ/Τ可测的,如果Τ内的所有集合的原像都在Σ内。 根据惯例,如果Y是某个拓扑空间,例如实数空间\mathbb,或复数空间\mathbb,则我们通常使用Y上的开集所生成的波莱尔σ代数,除非另外说明。在这种情况下,可测空间(X,&Sigma)又称为波莱尔空间。 如果从上下文很清楚Τ和Σ是什么,则函数f可以称为Σ可测的,或干脆称为可测的。.

新!!: 单调收敛定理和可测函数 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 单调收敛定理和实数 · 查看更多 »

序列

数学上,序列是被排成一列的对象(或事件);这样,每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。.

新!!: 单调收敛定理和序列 · 查看更多 »

勒貝格積分

勒貝格積分(Lebesgue integral)是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是函数图像与x轴之间的面积。勒贝格积分则将积分运算扩展到更廣的函数(可測函數),并且也扩展了可以进行积分运算的集合(可測空間)。最早的积分运算对于非负值的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积(也就是黎曼積分),但這過程需要函數足够規則。但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析的极限过程中導致的函數,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。 在实分析和在其它许多数学领域中勒貝格積分拥有一席重要的地位。 勒貝格積分是以昂利·勒貝格命名的,他于1904年引入了这个积分定义。 今天勒贝格积分有狭义和广义两种意义。广义地说是对于一个在一般測度空間(的子集合)上的函数积分,在這情況下其測度不必然是勒貝格測度。狭义则是指对于勒贝格测度在實數線或者更高维数的歐幾里得空間的一个子集合上函数的积分。.

新!!: 单调收敛定理和勒貝格積分 · 查看更多 »

勒贝格控制收敛定理

在数学分析和测度论中,勒贝格控制收敛定理提供了积分运算和极限运算可以交换运算顺序的一个充分条件。在分析逐点收敛的函数数列的勒贝格积分时,积分号和逐点收敛的极限号并不总是可以交换的。控制收敛定理说明了,如果逐点收敛的函数列的每一项都能被同一个勒贝格可积的函数“控制”(即对变量的任何取值,函数的绝对值都小于另一个函数),那么函数列的极限函数的勒贝格积分等于函数列中每个函数的勒贝格积分的极限。勒贝格控制收敛定理显示出勒贝格积分相比于黎曼积分的优越性,在数学分析和实变函数论中有很大的应用。.

新!!: 单调收敛定理和勒贝格控制收敛定理 · 查看更多 »

简单函数

在实分析领域中,简单函数是只取得有限个值的实函数。有些作者还要求简单函数是可测的;实际上它们一定是可测的。 一个简单函数的基本例子,是半开区间.

新!!: 单调收敛定理和简单函数 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 单调收敛定理和级数 · 查看更多 »

法图引理

在测度论中,法图引理说明了一个函数列的下极限的积分(在勒贝格意义上)和其积分的下极限的不等关系。法图引理的名称来源于法国数学家皮埃尔·法图(Pierre Fatou),被用来证明测度论中的法图-勒贝格定理和勒贝格控制收敛定理。.

新!!: 单调收敛定理和法图引理 · 查看更多 »

有界

有界可以指:.

新!!: 单调收敛定理和有界 · 查看更多 »

有限集合

数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.

新!!: 单调收敛定理和有限集合 · 查看更多 »

最大下界

在数学中,某个集合 X 的子集 E 的下确界(infimum 或 infima,记为 inf E)是小于或等于的 E 所有其他元素的最大元素,其不一定在 E 內。所以还常用术语最大下界(简写为 glb 或 GLB)。在数学分析中,实数的下确界是非常重要的常见特殊情况。但這個定义,在更加抽象的序理论的任意偏序集合中,仍是有效的。 下确界是上确界概念的对偶。.

新!!: 单调收敛定理和最大下界 · 查看更多 »

最小上界公理

最小上界公理,又稱為上確界原理,是实分析的公理。之所以稱為公理,是因為它在实分析的公理系统裡,不能被除了它本身以外的公理所證明。这个公理声称如果实数的非空子集有上界,则它有最小上界。这个公理可以用來证明实数集是完备度量空间。有理数集不满足最小上界公理,因而就不是完备的。一个理想的例子是 S.

新!!: 单调收敛定理和最小上界公理 · 查看更多 »

测度

数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.

新!!: 单调收敛定理和测度 · 查看更多 »

重定向到这里:

单调收敛原理

传出传入
嘿!我们在Facebook上吧! »