我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

不动点定理

指数 不动点定理

在数学中,不动点定理是一個結果表示函数F在某種特定情況下,至少有一個不动点存在,即至少有一个点x能令函数F(x).

目录

  1. 23 关系: 偏序关系单位球面单调函数可计算性理论完全格巴拿赫不动点定理不动点不动点组合子布勞威爾不動點定理序数代数拓扑分形压缩函数克纳斯特-塔斯基定理克莱尼不动点定理餘弦连续函数迭代闭包算子邱奇-图灵论题递归欧几里得空间指称语义

  2. 迭代法
  3. 闭包算子

偏序关系

偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.

查看 不动点定理和偏序关系

单位球面

数学上,单位球面是到固定中心点距离为1的点的集合,其中距离可以是任何推广了的距离概念。单位球是单位球面所包围的区域。通常一个特定的点被表示为所研究的空间的原点,并且单位球面或单位球通常以该点为中心。因此通常单位球或者单位球面就是指以原点为中心的单位球或球面。 单位球面就是半径1的球面。单位球的重要之处是任何球面可以通过平移和缩放的组合来变换为单位圆。这样一般情况的球的属性可以归约到对于单位球的研究。.

查看 不动点定理和单位球面

单调函数

在数学中在有序集合之间的函数是单调(monotone)的,如果它们保持给定的次序。这些函数最先出现在微积分中后来推广到序理论中更加抽象结构中。尽管概念一般是一致的,两个学科已经发展出稍微不同的术语。在微积分中,我们经常说函数是单调递增和单调递减的,在序理论中偏好术语单调、反单调或序保持、序反转。.

查看 不动点定理和单调函数

可计算性理论

在计算机科学中,可计算性理论(Computability theory)作为计算理论的一个分支,研究在不同的计算模型下哪些算法问题能够被解决。相对应的,计算理论的另一块主要内容,计算复杂性理论考虑一个问题怎样才能被有效的解决。.

查看 不动点定理和可计算性理论

完全格

在数学中,完全格是在其中所有子集都有上确界(并)和下确界(交)的偏序集。完全格出现于数学和计算机科学的很多应用中。作为格的特殊实例,在序理论和泛代数中都有所研究。 完全格一定不能混淆于完全偏序(cpo),它构成严格的更加一般的一个偏序集合类别。更特殊的完全格是完全布尔代数和完全Heyting代数(locale)。.

查看 不动点定理和完全格

巴拿赫不动点定理

巴拿赫不动点定理,又称为压缩映射定理或压缩映射原理,是度量空间理论的一个重要工具。它保证了度量空间的一定自映射的不动点的存在性和唯一性,并提供了求出这些不动点的构造性方法。这个定理是以斯特凡·巴拿赫命名的,他在1922年提出了这个定理。.

查看 不动点定理和巴拿赫不动点定理

不动点

在数学中,函数的不动点或定点是指被这个函数映射到其自身一个点。例如,定义在实数上的函数f, 则2是函数f的一个不动点,因为f(2).

查看 不动点定理和不动点

不动点组合子

不动点组合子(Fixed-point combinator,或不动点算子)是计算其他函数的一个不动点的高阶函数。 函数 f 的不动點是將函數應用在輸入值 x 時,會傳回與輸出值相同的值,使得 f(x).

查看 不动点定理和不动点组合子

布勞威爾不動點定理

在数学中,布勞威爾不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石。布勞威爾不动点定理得名于荷兰数学家魯伊茲·布勞威爾()。 布劳威尔不动点定理说明:对于一个拓扑空间中满足一定条件的连续函数f,存在一个点x_0,使得f(x_0).

查看 不动点定理和布勞威爾不動點定理

序数

數學上,序數是自然數的一種擴展,與基數相對,著重於次序的性質。大於有限數的序數也稱作超限序數。 超限序数是由數學家格奥尔格·康托尔于1897年引入,用來考慮無窮序列,並用來對具有序结构的無窮集進行分類。.

查看 不动点定理和序数

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

查看 不动点定理和代数拓扑

分形压缩

分形壓縮 (Fractal Compression)又名碎形壓縮,是一種破壞性資料壓縮(失真壓縮)的方法,是一種以碎形為基礎的图像压缩,適用於紋理及一些自然影像。 當需要壓縮的影像自身存在部分相似性,則適用分型壓縮。這些圖案的共同特性為,雖然人眼會覺得圖片看起來複雜無比,但實際上圖片卻只包含非常低的資訊量,因此可以經過一個簡單的演算法產生。分形演算法將這些圖片轉換為名為「分形編碼」的數據資料,此種密碼用來重新建立加密(壓縮)過的圖檔。 簡而言之,分形壓縮就是利用自我相似縮小來壓縮,解壓縮則反之,是利用自我相似放大來解壓縮。.

查看 不动点定理和分形压缩

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

查看 不动点定理和函数

克纳斯特-塔斯基定理

在数学领域序理论和格理论中,Knaster–Tarski 定理,得名于 Bronisław Knaster 和阿尔弗雷德·塔斯基,它声称: 这个定理的一种逆命题由 Anne C. Davis 证明了: 如果所有次序保持函数 f: L → L 有不动点,则 L 是完全格。.

查看 不动点定理和克纳斯特-塔斯基定理

克莱尼不动点定理

在数学中,序理论的 Kleene 不动点定理声称给定任何完全格 L 和任何连续的(因此单调的)函数 f 的最小不动点(lfp)是 f 的升 Kleene 链的最小上界,这个链是 通过在 L 的底元素上迭代 f 而获得。用公式表达,Kleene 不动点定理声称 这里的 \textrm 指示最小不动点,\textrm 指示最小上界,而 \textrm_L 是 L 的底元素。.

查看 不动点定理和克莱尼不动点定理

餘弦

余弦是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为2nπ(n为整数)时,该函数有极大值1;在自变量为(2n+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。.

查看 不动点定理和餘弦

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

查看 不动点定理和连续函数

迭代

迭代是重复反馈过程的活动,其目的通常是为了接近并到达所需的目标或结果。每一次对过程的重复被称为一次“迭代”,而每一次迭代得到的结果会被用来作为下一次迭代的初始值。.

查看 不动点定理和迭代

闭包算子

在数学中,给定偏序集合 (P, ≤),在 P 上的闭包算子是函数 C: P → P 带有如下性质.

查看 不动点定理和闭包算子

邱奇-图灵论题

邱奇-图灵论题(Church–Turing thesis,又称邱奇-图灵猜想,邱奇论题,邱奇猜想,图灵论题)是一个关于可计算性理论的假设。该假设论述了关于函数特性的,可有效计算的函数值(用更现代的表述来说--在算法上可计算的)。简单来说,邱奇-图灵论题认为“任何在算法上可计算的问题同样可由图灵机计算”。 20世纪上半叶,对可计算性进行公式化表示的尝试有:.

查看 不动点定理和邱奇-图灵论题

递归

递归(Recursion),又译为--,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的。也可以理解为自我复制的过程。.

查看 不动点定理和递归

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

查看 不动点定理和欧几里得空间

指称语义

在计算机科学中,指称语义(Denotational semantics)是通过构造表达其语义的(叫做指称(denotation)或意义的)数学对象来形式化计算机系统的语义的一种方法。编程语言的形式语义的其他方法包括公理语义和操作语义。指称语义方式最初开发来处理一个单一计算机程序定义的系统。后来领域扩展到了由多于一个程序构成的系统,比如网络和并发系统。 指称语义起源于 克里斯托弗·斯特雷奇 和 Dana Scott 在1960年代的工作。在 Strachey 和 Scott 最初开发的时候,指称语义把计算机程序的指称(意义)解释为映射输入到输出的函数。后来证明对于允许包含递归定义的函数和数据结构,这样的元素的程序的指称(意义)定义太受限制了。为了解决这个困难,Scott 介入了基于域的指称语义的一般性方法。后来的研究者介入了基于幂域的方法,来解决并发系统的语义的问题。 粗略的说,指称语义关注找到代表程序所做所为的数学对象。这种对象的搜集叫做域。例如,程序(或程序段)可以被偏函数,或演员事件图想定,或用环境和系统之间的博弈表示: 它们都是域的一般性例子。 指称语义的一个重要原则是“语义应当是复合性的”: 程序段的指称应当建立自它的子段的指称。最简单的例子是: “3 + 4”的意义确定自“3”、“4”和“+”的意义。 指称语义最初被开发为把函数式和顺序式程序建模为映射输入到输出的数学函数的框架。本文第一节描述在这个框架内开发的指称语义。后续章节处理多态、并发等问题。.

查看 不动点定理和指称语义

另见

迭代法

闭包算子