之间序数和数学相似
序数和数学有(在联盟百科)7共同点: 基数 (数学),序理论,全序关系,皮亚诺公理,超限数,自然数,拓扑空间。
基数 (数学)
在日常交流中,基數或量數是對應量詞的數,例如「一顆蘋果」中的「一」。與序數相對,序數是對應排列的數,例如「第一名」中的「一」及「二年級」中的「二」。 在數學上,基數或势,即集合中包含的元素的「个数」(參見势的比较),是日常交流中基數的概念在數學上的精確化(並使之不再受限於有限情形)。有限集合的基數,其意義與日常用語中的「基數」相同,例如\的基數是3。無限集合的基數,其意義在於比較兩個集的大小,例如整數集和有理數集的基數相同;整數集的基數比實數集的小。.
基数 (数学)和序数 · 基数 (数学)和数学 ·
序理论
序理论是研究捕获数学排序的直觉概念的各种二元关系的数学分支。.
全序关系
全序关系即集合X上的反对称的、传递的和完全的二元关系(一般称其为\leq)。 若X满足全序关系,则下列陈述对于X中的所有a,b和c成立:.
皮亚诺公理
亚诺公理(Peano axioms),也称皮亚诺公设,是意大利数学家皮亚诺提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。.
超限数
超限数是大于所有有限数(但不必為绝对无限)的基数或序数,分別叫做超穷基数(transfinite cardinal number)和超穷序数(transfinite ordinal number)。术语「超限」(transfinite)是康托尔提出的,他希望避免词语无限(infinite)和那些只不过不是有限(finite)的那些对象有关的某些暗含。當時其他的作者少有这些疑惑;现在被接受的用法是称超限基数或序数为无限的。但是术语「超限」仍在使用。 超穷序数可以確定超穷基数,並導出阿列夫数序列。 对于有限数,有两种方式考虑超限数,作为基数和作为序数。不像有限基数和序数,超限基数和超限序数定义了不同类别的数。.
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
拓扑空间
拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.
上面的列表回答下列问题
- 什么序数和数学的共同点。
- 什么是序数和数学之间的相似性
序数和数学之间的比较
序数有48个关系,而数学有219个。由于它们的共同之处7,杰卡德指数为2.62% = 7 / (48 + 219)。
参考
本文介绍序数和数学之间的关系。要访问该信息提取每篇文章,请访问: