我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

C*-代数和量子力學的數學表述

快捷方式: 差异相似杰卡德相似系数参考

C*-代数和量子力學的數學表述之间的区别

C*-代数 vs. 量子力學的數學表述

C*-代数(或读作“C星代数”)是数学分支中泛函分析的重要研究对象。C*-代数的典型例子是满足以下两个性质的复希尔伯特空间的线性算子的代数A:. 量子力学的数学表述是对量子力学进行严谨描述的数学表述体系。与20世纪初发展起来的旧量子论的数学形式不同,它使用了一些抽象的代数结构,如无穷维希尔伯特空间和这些空间上的算子。这些结构中有许多源于泛函分析。这一纯粹数学研究领域的发展过程既平行于又受影响于量子力学的需要。简而言之,物理可观察量的值,如能量和动量的值不再作为相空间上的函数值,而是作为本征值,或者更为精确地来说是希尔伯特空间中线性算子的谱值。 这一表述体系一直沿用至今。该体系的核心为“量子态”和“可观察量”这两个概念。对于原子尺度的系统来说,这两个概念与之前用来描述物理现实的模型大相径庭。虽然数学上允许对许多量的计算结果进行实验测量,但是实际上,在对于符合一定条件的两个物理量同时进行精确测量时,却存在一个理论性限制——不确定性原理。这一原理由维尔纳·海森堡通过思想实验首次阐明,且在该体系中以可观察量的不可交换性进行表述。 在量子力学作为一支独立理论形成之前,物理学中用到的数学理论主要是以微积分为源头、后来又添以微分几何与偏微分方程的数学分析。统计力学中还用到概率论。几何直观在这两个理论中扮演重要角色。相对论中的许多概念和方法也是基于几何理论。量子物理学中对于实验现象的一系列不同以往的理解在1895年到1915年间开始逐步形成。其中具有代表性的思想为波粒二象性。但在量子理论形成之前的10至15年中,物理学家仍然在经典物理学的框架内思考量子理论,所基于的数学结构也是完全相同的。其中具有代表性的例子是玻尔-索末菲量子化条件。这一原理完全建构于经典框架中的相空间。.

之间C*-代数和量子力學的數學表述相似

C*-代数和量子力學的數學表述有(在联盟百科)10共同点: 可觀察量复数希尔伯特空间帕斯库尔·约当矩陣力學约翰·冯·诺伊曼线性映射维尔纳·海森堡量子力学泛函分析

可觀察量

在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。.

C*-代数和可觀察量 · 可觀察量和量子力學的數學表述 · 查看更多 »

复数

#重定向 复数 (数学).

C*-代数和复数 · 复数和量子力學的數學表述 · 查看更多 »

希尔伯特空间

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.

C*-代数和希尔伯特空间 · 希尔伯特空间和量子力學的數學表述 · 查看更多 »

帕斯库尔·约当

帕斯库尔·约当(Pascual Jordan,),德国理论和数学物理學家,他在量子力学和量子场论方面做出非常重要的贡献。他在数学形式的矩阵力学贡献颇多,并且发展了费米子正则反交换关系。他发明的约当代数是為了量子力学的數學基礎而發展,現已应用于其他的数学領域。.

C*-代数和帕斯库尔·约当 · 帕斯库尔·约当和量子力學的數學表述 · 查看更多 »

矩陣力學

矩陣力學是量子力學其中一種的表述形式,它是由海森堡、玻恩和约尔当(P.

C*-代数和矩陣力學 · 矩陣力學和量子力學的數學表述 · 查看更多 »

约翰·冯·诺伊曼

约翰·冯·诺伊曼(John von Neumann,,,),原名诺依曼·雅诺士·拉约士(Neumann János Lajos,),出生於匈牙利的美國籍猶太人数学家,现代電子計算機与博弈论的重要创始人,在泛函分析、遍历理论、几何学、拓扑学和数值分析等众多数学领域及計算機學、量子力學和经济学中都有重大貢獻。 冯·诺伊曼从小就以过人的智力与记忆力而闻名。冯·诺伊曼一生中发表了大约150篇论文,其中有60篇纯数学论文,20篇物理学以及60篇应用数学论文。他最后的作品是一个在医院未完成的手稿,后来以书名《》发布,表现了他生命最后时光的兴趣方向。 “诺依曼”和“诺伊曼”2种同音不同字的德音汉语译名写法都比较常见。另外也有资料采用其英音汉语译名“冯纽曼”。.

C*-代数和约翰·冯·诺伊曼 · 约翰·冯·诺伊曼和量子力學的數學表述 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

C*-代数和线性映射 · 线性映射和量子力學的數學表述 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

C*-代数和维尔纳·海森堡 · 维尔纳·海森堡和量子力學的數學表述 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

C*-代数和量子力学 · 量子力学和量子力學的數學表述 · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

C*-代数和泛函分析 · 泛函分析和量子力學的數學表述 · 查看更多 »

上面的列表回答下列问题

C*-代数和量子力學的數學表述之间的比较

C*-代数有19个关系,而量子力學的數學表述有117个。由于它们的共同之处10,杰卡德指数为7.35% = 10 / (19 + 117)。

参考

本文介绍C*-代数和量子力學的數學表述之间的关系。要访问该信息提取每篇文章,请访问: