目录
多項式時間
多項式時間(Polynomial time)在計算複雜度理論中,指的是一個問題的計算時間m(n)不大於問題大小n的多項式倍數。任何抽象機器都擁有一複雜度類,此類包括可於此機器以多項式時間求解的問題。 以數學描述的話,則可說m(n).
非确定型图灵机
如果不加特殊说明,通常所说的图灵机都是确定型图灵机。非确定型图灵机和确定型图灵机的不同之处在于,在计算的每一时刻,根据当前状态和读写头所读的符号,机器存在多种状态转移方案,机器将任意地选择其中一种方案继续运作,直到最后停机为止。具体而言,其状态转移函数为 \delta: Q \times \Gamma \to 2^ 其中Q是状态集合,\Gamma是带字母表,L, R分别表示读写头向左和向右移动;符号2^ 表示集合A的幂集,即 2^A.
NP (複雜度)
非定常多项式(non-deterministic polynomial,缩写:NP)时间复杂性类,或称非确定性多项式时间复杂性类,包含了可以在多项式时间内,对一个判定性算法问题的实例,一个给定的解是否正确的算法问题。 NP是计算复杂性理论中最重要的复杂性类之一。它包含复杂性类P,即在多项式时间内可以验证一个算法问题的实例是否有解的算法问题的集合;同时,它也包含NP完全问题,即在NP中“最难”的问题。计算复杂性理论的中心问题,P/NP问题即是判断对任意的NP完全问题,是否有有效的算法,或者NP与P是否相等。.
P (複雜度)
在計算複雜度理論中,P 是在複雜度類問題中可於決定性圖靈機以多項式量級(或稱多項式時間)求解的決定性問題。 P通常表示那類可以"有效率地解決"或"溫馴"的可計算型問題,就算指數級非常高也可以算作"溫馴",例如RP與BPP問題。當然P類存在很多現實處理上一點也不溫馴的問題,例如一些至少需要n1000000指令來解決的問題。很多情況下存在著更難的複雜度問.
決定性問題
在可計算性理論與計算複雜性理論中,所謂的決定性問題(Decision problem)是一個在某些形式系統回答是或否的問題。例如:「給兩個數字x與y,x是否可以整除y?」便是決定性問題,此問題可回答是或否,且依據其x與y的值。 決定性問題與功能性問題(Function problem,或複雜型問題)密切相關,功能性問題的答案內容,較簡單的是與非複雜許多。範例問題:「給予一個正整數x,則哪些數可整除x?」 另一個與上述兩類問題相關的是最佳化問題(Optimization problem),此問題關心的是尋找特定問題的最佳答案。 解決決定性問題的方法稱為決策程式或演算法。一個針對決定性問題的演算法將說明給予參數x和y的情況下如何決定x是否整除y。若是某些決定性問題可以被一些演算法所解決,則稱此問題可決定。 計算複雜度的領域中,分類可決定問題的依據在於此問題有多難被解決。在此標準下,所謂的難是以解決某問題最有效率的演算法所花費的計算資源為依據。在遞迴理論中,非決定性問題由圖靈度決定,指的是一種在任何解答中隱含的不可計算性量詞。 計算性理論的研究集中在決定性問題上。在與功能性問題的等值問題中,並沒有失去其普遍性。.