目录
American Scientist
《American Scientist》(非正式的縮寫是AmSci)是美國發行的一本關於科學和技術的雙月刊雜誌。自1913年由出版。每期都包括著名科學家和工程師撰寫的專題文章,從分子生物學到計算機工程領域的研究綜述。 每期還會有漫畫家()的作品,包括、和。還有專欄Scientists' Nightstand (直譯為「科學家的床頭櫃」)用於評論大量與科學有關的書籍和小說。 線上版(American Scientist Online )於2003年5月公開。.
查看 NP (複雜度)和American Scientist
复杂
在日常说法中,复杂或复杂性和简单相对立。但在特定的场合,复杂的反面是各部分相互独立,而复杂化才与简单相对立。本条目中,是从这种特定科学意义上,对复杂或复杂性予以讨论。.
查看 NP (複雜度)和复杂
图灵机
图灵机(),又称确定型图灵机,是英国数学家艾倫·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻辑机器。.
查看 NP (複雜度)和图灵机
算法导论
《算法导论》(Introduction to Algorithms)是基础算法方面最权威、最详细的著作之一,在很多国际著名大学被用于算法课的教材。诸多算法方面的论文将其列入参考文献当中。 该书详细的介绍了诸多常见的算法及数据结构,并用严谨的证明来论证其正确性。每个章节均有例题,适合学习者深入理解。第一版刊行于1990年,2009年最新版为第三版。在许多国家常常以作者姓名首个英文字母被称为CLRS(第一版则简称为CLR)。.
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 NP (複雜度)和素数
罗纳德·李维斯特
罗纳德·林納·李维斯特 (Ronald Linn Rivest,)是一名美国密码学家。他是麻省理工学院电子工程和计算机科学部门 (EECS)计算机科学的一名教授 和麻省理工学院之 (CSAIL)的成员。他与阿迪·萨莫尔和伦纳德·阿德曼共同发明了RSA加密演算法;以及在密码学和计算机科学等领域做出许多杰出贡献而知名。RSA被广泛使用在计算机安全应用上,包括https。2002年,他与阿迪·萨莫尔和伦纳德·阿德曼一起因在公钥密码学RSA加密演算法取得的杰出贡献而获得图灵奖。.
計算複雜性理論
计算复杂性理论(Computational complexity theory)是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法。 如果一个问题的求解需要相当多的资源(无论用什么算法),则被认为是难解的。计算复杂性理论通过引入数学计算模型来研究这些问题以及定量计算解决问题所需的资源(时间和空间),从而将资源的确定方法正式化了。其他复杂性测度同样被运用,比如通信量(应用于通信复杂性),电路中门的数量(应用于电路复杂性)以及中央处理器的数量(应用于并行计算)。计算复杂性理论的一个作用就是确定一个能或不能被计算机求解的问题的所具有的实际限制。 在理论计算机科学领域,与此相关的概念有算法分析和可计算性理论。两者之间一个关键的区别是前者致力于分析用一个确定的算法来求解一个问题所需的资源量,而后者则是在更广泛意义上研究用所有可能的算法来解决相同问题。更精确地说,它尝试将问题分成能或不能在现有的适当受限的资源条件下解决这两类。相应地,在现有资源条件下的限制正是区分计算复杂性理论和可计算性理论的一个重要指标:后者关心的是何种问题原则上可以用算法解决。.
NP完全
NP完全或NP完備(NP-Complete,縮寫為NP-C或NPC),是計算複雜度理論中,決定性問題的等級之一。NPC問題,是NP(非決定性多項式時間)中最難的決定性問題。因此NP完備問題應該是最不可能被化簡為P(多項式時間可決定)的決定性問題的集合。若任何NPC問題得到多項式時間的解法,那此解法就可應用在所有NP問題上。更詳細的定義容下敘述。 一個NPC問題的例子是子集合加總問題,題目為 這個問題的答案非常容易驗證,但目前沒有任何一個夠快的方法可以在合理的時間內(意即多項式時間)找到答案。只能一個個將它的子集取出來一一測試,它的時間複雜度是Ο(2n),n是此集合的元素數量。.
P (複雜度)
在計算複雜度理論中,P 是在複雜度類問題中可於決定性圖靈機以多項式量級(或稱多項式時間)求解的決定性問題。 P通常表示那類可以"有效率地解決"或"溫馴"的可計算型問題,就算指數級非常高也可以算作"溫馴",例如RP與BPP問題。當然P類存在很多現實處理上一點也不溫馴的問題,例如一些至少需要n1000000指令來解決的問題。很多情況下存在著更難的複雜度問.
P/NP问题
P/NP问题是在理论信息学中计算复杂度理论领域里至今未被解决的问题,也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克(Stephen A. Cook)和相对独立地提出了下面的问题,即复杂度类P和NP是否是恒等的(P.
決定性問題
在可計算性理論與計算複雜性理論中,所謂的決定性問題(Decision problem)是一個在某些形式系統回答是或否的問題。例如:「給兩個數字x與y,x是否可以整除y?」便是決定性問題,此問題可回答是或否,且依據其x與y的值。 決定性問題與功能性問題(Function problem,或複雜型問題)密切相關,功能性問題的答案內容,較簡單的是與非複雜許多。範例問題:「給予一個正整數x,則哪些數可整除x?」 另一個與上述兩類問題相關的是最佳化問題(Optimization problem),此問題關心的是尋找特定問題的最佳答案。 解決決定性問題的方法稱為決策程式或演算法。一個針對決定性問題的演算法將說明給予參數x和y的情況下如何決定x是否整除y。若是某些決定性問題可以被一些演算法所解決,則稱此問題可決定。 計算複雜度的領域中,分類可決定問題的依據在於此問題有多難被解決。在此標準下,所謂的難是以解決某問題最有效率的演算法所花費的計算資源為依據。在遞迴理論中,非決定性問題由圖靈度決定,指的是一種在任何解答中隱含的不可計算性量詞。 計算性理論的研究集中在決定性問題上。在與功能性問題的等值問題中,並沒有失去其普遍性。.
另见
複雜度類
- 2-EXPTIME
- ALL (複雜度)
- DLOGTIME
- DTIME
- E (複雜度)
- ELEMENTARY
- EXPSPACE
- EXPTIME
- L (複雜度)
- NC (复杂度)
- NE (複雜度)
- NEXPTIME
- NL (複雜度)
- NL完全
- NP (複雜度)
- NP-易
- NP困难
- NP完全
- NSPACE
- NTIME
- P (複雜度)
- P-完全
- PH (複雜度)
- PR (複雜度)
- PSPACE
- PolyL
- R (複雜度)
- RE (複雜度)
- SC (複雜度)
- UP (複雜度)
- 伪多项式时间
- 反NP
- 指數譜系
- 算数阶层
- 複雜度類
- 複雜度類列表
- 隨機存取圖靈機
亦称为 NP (复杂性类),NP问题。