目录
19 关系: 天文單位,太阳质量,太陽系外行星,寶瓶座,开尔文,地球半径,克卜勒太空望遠鏡,类地行星,系外行星偵測法,紅矮星,適居帶,行星平衡溫度,视星等,适居太阳系外行星目录,K2-72,K2-72c,恒星光谱,潮汐鎖定,晨昏圈。
- 2016年发现的系外行星
- 適居帶內的系外行星
天文單位
天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.
查看 K2-72e和天文單位
太阳质量
太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.
查看 K2-72e和太阳质量
太陽系外行星
太陽系外行星或系外行星,指在太陽系之外的行星。截至2018年5月5日,已經被確認的系外行星總共有3767顆(另有超過2300顆尚未被確認),當中至少有77%是透過凌日現象發現的;這些行星分屬2816個行星系,其中有628個多行星系。克卜勒任務已經檢測到18,000顆行星候選者,包括262顆位於潛在適居帶的候選者。 在銀河系,估計有數十億顆恆星(若每顆恆星都至少有一顆行星,將導致有1,000億至4,000億顆行星),不只在恆星周圍有行星,也有自由移動的行星質量天體,而已知最靠近的系外行星是比鄰星b。 幾乎所有已經發現的系外行星都在我們自己的銀河系內,但是有少量的銀河系外行星可能可以被檢測出來。哈佛-史密松天體物理中心在2013年1月提出的一份報告中提到:估計在銀河系內「至少有170億顆」地球尺度的系外行星。 數百年來,許多哲學家和科學家都認為在太陽系以外應該也有行星的存在,但是沒有辦法知道行星有多普遍,或是與太陽系行星的相似度又是如何。在19世紀,許多的偵測方法被提出來,但最終所有的天文學家得到的結果都是否定的。第一個被確認的檢測出現在1992年,發現有幾顆質量類似地球的天體環繞著脈衝星PSR B1257+12。在主序帶恆星發現行星的第一個偵測結果出現在1995年,在鄰近的飛馬座51發現了以4天週期公轉一週的巨大行星。由於觀測技術的進步,自此之後偵測到的數量與效率迅速的增加。有些系外行星被大望遠鏡直接拍攝到影像,但絕大多數的系外行星都是經由徑向速度測量檢出的。除了系外行星,「系外彗星」(在太陽系之外的彗星)也被發現,也許在銀河系內也是很普遍的。 最常見的系外行星是巨大的行星,相信是類似於木星或海王星,但這也反應了取樣偏差,因為大質量的行星比較容易被觀察到。一些相對比較輕的系外行星,質量只有地球的幾倍(現在所謂的超級地球);如眾所周知,在統計上的研究表明它們的數量應該超過巨大的行星。雖然現在已經發現一小撮包括地球大小和更小的行星,似乎表現出其它的地球類似體屬性。也存在著有這行星質量的天體環繞著棕矮星和不受到恆星拘束在太空中自由移動的行星;然而,「行星」這個名詞尚未應用在這些天體上。 發現的太陽系外行星,特別是軌道位於適居帶,極有可能有液態水存在表面的那些行星(還因此可能有生命),提高了搜尋外星生命的興趣。因此,尋找太陽系外的行星還包括適居行星,在太陽系外的行星適合承載生命的研究中,被考慮的因素相當廣泛。 在2013年1月7日,來自克卜勒任務太空天文台的天文學家宣布發現了KOI-172.02,一顆像地球的系外行星候選者,在一顆類似太陽的恆星的適居帶中環繞著,可能是「存在著外星生命的主要候選者」。.
寶瓶座
宝瓶座(Aquarius,天文符号:♒)黃道帶星座之一,面积979.85平方度,占全天面积的2.375%,在全天88个星座中,面积排行第十位。宝瓶座中亮于5.5等的恒星有56颗,最亮星为虛宿一(宝瓶座β),视星等为2.90。每年8月25日子夜宝瓶座中心经过上中天。 寶瓶座在日本被称为水瓶座(みずがめ座).
查看 K2-72e和寶瓶座
开尔文
开尔文(Kelvin)是温度的计量单位。它是國際單位制(SI)的七个基本單位之一,符號为K。以开尔文计量的温度标准称为热力学温标,其零点为绝对零度。在热力学的经典表述中,绝对零度下所有热运动停止。1开尔文定义为水的三相点與绝对零度相差的。水的三相点是0.01°C,因此温度变化1攝氏度,相当于变化了1开尔文。 开氏温标得名自英國工程师和物理学家威廉·汤姆森,第一代开尔文男爵(1824–1907)。.
查看 K2-72e和开尔文
地球半径
由于地球并非完美的球体,所以并不能用一个值来表达地球的实际半径。但由于地球的形状很接近球体,用6,357km到6,378km(≈3,950 - 3,963英里)的范围值可以涵盖需要的所有半径。从数种把地球当做球体的建模方法都可以得到一个较方便的平均半径,这个值为6371km(≈3,958.7613英里)。“半径”常用来表示一个球体的属性,但本文中它更多的指地球“中心”到假象的地球模型表面的距离。这个距离随着随着位置的不同而不同。本文主要主要把地球当做球体或者椭球体模型来对待。对于地球模型的更详细的讨论可以参见条目地球形状。 地球半径有时候会当做一个距离单位来使用,特别是在天文学和地质学当中。它用符号R_\oplus表示。.
查看 K2-72e和地球半径
克卜勒太空望遠鏡
克卜勒任務(Kepler Mission)是美國國家航空暨太空總署設計來發現環繞著其他恆星之類地行星的太空望遠鏡。使用NASA發展的太空光度計,預計將花3.5年的時間,在繞行太陽的軌道上,觀測10萬顆恆星的光度,檢測是否有行星凌星的現象(以凌日的方法檢測行星)。為了尊崇德國天文學家-zh-cn:开普勒; zh-tw:克卜勒; zh-hk:開普勒-,這個任務被稱為克卜勒任務。 克卜勒是NASA低成本的發現計畫聚焦在科學上的任務。NASA的是這個任務的主管機關,提供主要的研究人員並負責地面系統的開發、任務的執行和科學資料的分析。克卜勒任務進度的處理是由噴射推進實驗室執行,負責克卜勒任務飛行系統的開發。 克卜勒太空船於2009年3月6日22:49:57UTC-5發射,已确认了130多个系外行星和发现了超过2700颗候选行星。 2013年5月15日,克卜勒太空望遠鏡由於反應輪故障,無法設定望遠鏡方向,因此被迫停止其搜尋系外行星任務。 同年8月15日,NASA宣布放棄兩個故障的反應輪,以替代計畫使用剩下兩個正常的反應輪重新開始工作。.
类地行星
類地行星(terrestrial planet),又稱地球型行星(telluric planet)或岩石行星(rocky planet)都是指以硅酸鹽岩石為主要成分的行星。這個項目的英文字根源自拉丁文的「Terra」,意思就是地球或土地。由於大眾媒體的流行,加上對象是行星,因此在二合一下採用「類地」行星這個譯名。類地行星與氣體巨星有極大的不同,氣體巨星可能沒有固體的表面,而主要的成分是氫、氦和存在不同物理狀態下的水。 截至2013年11月4日,根據開普勒太空任務的數據,銀河系估計共有逾400億圍繞著類太陽恆星或紅矮星公轉,位於適居帶內,且接近地球大小的类地行星存在。其中約110億顆是圍繞著類太陽恆星公轉。而最近的一個距離地球12光年。.
查看 K2-72e和类地行星
系外行星偵測法
任何行星相對於其母恆星都是極其微弱的光源。要在母恆星耀眼的光輝內同時檢測出這種微弱的光源,都有其內在的困難。因為這種緣故,只有很少的太陽系外行星被直接觀測到。 取而代之的,天文學家通常都訴諸間接的方法來偵測太陽系外的行星。目前,有好幾種間接的方法都取得了成功。.
紅矮星
紅矮星,也就是M型主序星(MV),根據赫羅圖,「紅矮星」在眾多處於主序階段的恆星當中,其大小及溫度均相對較小和低,在光譜分類方面屬於M型。它們在恆星中的數量較多,大多數紅矮星的直徑及質量均低於太陽的三分一,表面溫度也低於3,500 K。釋出的光也比太陽弱得多,有時更可低於太陽光度的萬分之一。又由於內部的氫元素核聚變的速度緩慢,因此它們也擁有較長的壽命。质量低于0.35太阳质量的红矮星会有充分的对流,氦元素会在恒星内部均匀分布,而不会在核心累积,紅矮星不會膨脹成紅巨星,而逐步收縮,直至氫氣耗盡。 它们会保持稳定的光度和光谱持续数千亿年,由于现在宇宙的年龄有限,还没有红矮星发展到之后的阶段。 此外人們又發現,不含「金屬」的紅矮星只佔很少(在天文學裡,「金屬」是指氫和氦以外的重元素),而根據「大爆炸」理論的預測,第一代恆星應只擁有氫、氦及鋰元素,如果這些早期恆星包括紅矮星,這些「純正」的紅矮星至今天定能繼續觀測得到,而事實卻不然,含有「金屬」的恆星佔了紅矮星的大多數。因此在宇宙形成時,能發光的第一代恆星定擁有超高質量,它們擁有極短壽命,在經過超新星爆發後,重元素得以產生,成為形成低質量恆星的所需物質。 宇宙眾多恆星中,紅矮星佔了大多數,大約73%左右。, 科学网, 2014-03-06 09:39:11 离太阳最近的65颗恒星中有50颗是红矮星。例如離太陽最近的恆星,半人馬座的南門二比鄰星,便是一顆紅矮星,其光譜分類為M5,視星等11.0。 至2005年,人們首度在紅矮星身上,發現有太陽系外行星圍繞旋轉,第一顆行星的質量與海王星差不多,日距約為600萬公里(0.04天文單位),其表面度約為攝氏150°C。2006年,人們又發現一顆與土星差不多的行星繞著另一顆紅矮星旋轉,這顆行星的日距為3.9億公里(2.6天文單位),表面溫度為攝氏零下220°C。.
查看 K2-72e和紅矮星
適居帶
適居帶(circumstellar habitable zone, CHZ,或稱宜居帶),是天文學上給一種空間的名稱,指的是行星系中適合生命存在的區域。適居帶中的情況有利於生命的發展,並且可能像地球般出現高等生命。。有兩種區域是有可能的,一個是在行星系內,另一個則存在于星系之中。在適合的區域內的行星和天然衛星是最佳的候選者,這些地球外的生命有能力生活在類似我們的環境下。天文學家相信生命最可能發生在像太陽系這樣的星周盤適居帶(CHZ)和大星系的星系適居帶(GHZ) 內(雖然天文學家對後者的研究才剛開始)。適居帶也許是指「生命帶」、「綠帶」或「古迪洛克帶」(Goldilocks)。在我們的太陽系中,適居帶為距離恆星0.99至1.70天文單位之間的區域。 格利泽581g是人類在紅矮星格利泽 581 (距離地球大約20光年)旁發現的第六颗行星。格利泽581g是至今在天文學家發現系外行星中,軌道理論上位於適居帶中的著名例子。目前天文學家僅發現了十幾顆行星位於適居帶中,而克卜勒太空望遠鏡則確認了54顆行星位於適居帶中。天文學家目前估計銀河系至少有500,000,000顆行星位於適居帶中。.
查看 K2-72e和適居帶
行星平衡溫度
行星平衡溫度(Planetary equilibrium temperature)是一個理論上的行星表面溫度。該理論簡單地將行星當成黑體,並且行星的外在熱源只有母恆星。在這個模型中並不考慮行星是否存在大氣層,因此溫室效應並不列入考慮。所以,依照這個模型計算的溫度值是一個理論上的黑體溫度,也就是行星的表面是理想化的。 其他研究人員以不同的名稱描述這項概念,例如行星的「平衡黑體溫度」,或「有效輻射發射溫度」。相似的概念則包含了全球平均溫度、、全球平均表面大氣溫度,前述概念都考慮到全球变暖的相關效應。.
视星等
视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.
查看 K2-72e和视星等
适居太阳系外行星目录
適居太陽系外行星目錄是波多黎各大學的行星適居性實驗室編製,這個列表是根據其方法及估算而使用地球相似指數(Earth Similarity Index)去為可能適居的太陽系外行星評定等級。.
K2-72
K2-72,即2MASS J22182923-0936444,是一顆位於寶瓶座的紅矮星,距離地球約。該恆星旁已發現四顆體積較地球小的太陽系外行星,並且其中兩顆位於適居帶內。.
查看 K2-72e和K2-72
K2-72c
K2-72c是一顆環繞紅矮星K2-72的小體積太陽系外行星,距離地球約227.7光年。該行星被認為位於母恆星的適居帶內,因此表面可能有液態水存在。K2-72c的軌道週期15.2日,半徑大約是地球的86%。.
恒星光谱
在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.
查看 K2-72e和恒星光谱
潮汐鎖定
潮汐鎖定(或同步自轉、受俘自轉)發生在重力梯度使天體永遠以同一面對著另一個天體;例如,月球永遠以同一面朝向著地球。潮汐鎖定的天體繞自身的軸旋轉一圈要花上繞著同伴公轉一圈相同的時間。這種同步自轉導致一個半球固定不變的朝向夥伴。通常,在給定的任何時間裡,只有衛星會被所環繞的更大天體潮汐鎖定,但是如果兩個天體的物理性質和質量的差異都不大時,各自都會被對方潮汐鎖定,這種情況就像冥王星與凱倫。 這種效應被使用在一些人造衛星的穩定上。.
查看 K2-72e和潮汐鎖定
晨昏圈
晨昏圈,又称晨昏線,或是曙暮光區是一條虛擬的線,它在行星的表面畫出了白天和黑夜的交界線(也稱為灰線)。晨昏圈由晨线和昏线组成,晨线和昏线各是一个半圆弧,晨线的东边是昼半球,昏线的西边是夜半球。在地球,晨昏線是地球上昼半球和夜半球的分界线,是一條直徑與地球接近的圓圈,除了極區以外,晨昏線每天會經過地球上同一個地點兩次, 一次是日出,另一次是日落。.
查看 K2-72e和晨昏圈
另见
2016年发现的系外行星
- BD+20594b
- K2-33b
- K2-72c
- K2-72e
- KELT-11b
- KELT-9b
- OGLE-2007-BLG-349(AB)b
- TRAPPIST-1d
- 克卜勒1229b
- 克卜勒1625b
- 克卜勒1647b
- 比鄰星b
- 葛利斯536b