徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

黎曼曲面

指数 黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

43 关系: 基本域基本多边形基本群单值化定理可定向性双射同胚复平面复流形完备性射影平面上半平面平方根亏格代数几何代數曲線开集佐恩引理凯勒流形函数全纯函数克莱因瓶图册 (拓扑学)紧空间莫比乌斯带行列式複分析高斯-博内定理豪斯多夫空间黎曼球面黎曼-罗赫定理黎曼映射定理黎曼流形黎曼曲率張量自然對數雅可比矩阵波恩哈德·黎曼流形数学拓扑曲率曲面

基本域

數學上,給出一個拓撲空間和在其上作用的群,一個點在群作用下的像是這個作用的一個軌道。一個基本域是這個空間的一個子集,包含了每個軌道中恰好一點。基本域具體地用幾何表現出抽象的軌道代表集。 構造基本域的方法有很多。一般會要求基本域是連通的,又對其邊界加上一些限制,例如是光滑或是多面的。基本域在群作用下的像,就會把空間密鋪。.

新!!: 黎曼曲面和基本域 · 查看更多 »

基本多边形

在数学上,每个闭曲面在几何拓扑的意义下,可以由一个偶数条边的有向多边形,把它的边成对地粘合构造出来,这样的多边形称之为基本多边形(fundamental polygon)。 这个构造可以表示成一个长为2n的字符串,一共n个不同的符号,每个符号出现两次带有指数 +1或 -1。指数 -1的符号对应于该边的定向与基本多边形的定向相反。.

新!!: 黎曼曲面和基本多边形 · 查看更多 »

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

新!!: 黎曼曲面和基本群 · 查看更多 »

单值化定理

数学上,曲面的单值化定理是说任何曲面上都有一个常高斯曲率的度量。事实上,在每一个给定的共形类中我们都可以找到一个常高斯曲率的度量。等价的說,用复分析的语言,任何单连通的黎曼曲面都共形等价於复平面、单位圆盘和黎曼球面三者之一。 Category:黎曼几何 Category:黎曼曲面 D.

新!!: 黎曼曲面和单值化定理 · 查看更多 »

可定向性

欧几里得空间R3中一个曲面S是可定向(orientable)的如果一个二维图形(比如)沿着曲面移动后回到起点不能使它看起来像它的镜像()。否则曲面是不可定向(non-orientable)的。 更确切地,应用于非嵌入曲面,一个曲面可定向如果不存在从二维球B与单位区间的乘积到曲面的连续函数f: B\times \to S,使得f(b,t).

新!!: 黎曼曲面和可定向性 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 黎曼曲面和双射 · 查看更多 »

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

新!!: 黎曼曲面和同胚 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: 黎曼曲面和复平面 · 查看更多 »

复流形

微分几何中,一个复流形是一个流形,使得每个鄰域在一种连续的方式下看起来象一个複n维空间。更精确的讲,一个复流形有一个坐标图册,其每个坐标图映射到Cn,并且坐标图之间的坐标变换是全纯的。 复流形可以视为微分流形的一种特例。例如,一个1维复流形几何上就是一个曲面,称为黎曼曲面。变换函数必须全纯这个要求意味着和通常的微分流形不同,不同的''C''''k''-微分结构对于不同k没有区别,因为全纯函数解析,一次每个全纯结构也是一个Ck结构,对于任意k ≥1成立。 复流形的理论和实流形的有相当不同的感受,因为複解析函数比光滑函数更为严格。例如,使用惠特尼嵌入定理,每个实流形可以嵌入为Rn的子流形,,但是很少有复流形可以成为Cn的子流形。 Category:复流形 Category:流形上的结构.

新!!: 黎曼曲面和复流形 · 查看更多 »

完备性

在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化或哥德尔不完备定理。.

新!!: 黎曼曲面和完备性 · 查看更多 »

射影平面

在數學裡,投影平面(projective plane)是一個延伸平面概念的幾何結構。在普通的歐氏平面裡,兩條線通常會相交於一點,但有些線(即平行線)不會相交。投影平面可被認為是個具有額外的「無窮遠點」之一般平面,平行線會於該點相交。因此,在投影平面上的兩條線會相交於一個且僅一個點。 文藝復興時期的藝術家在發展透視投影的技術中,為此一數學課題奠定了基礎。投影平面的典型範例為實投影平面,亦稱為「擴展歐氏平面」。此一範例在代數幾何、拓撲學及投影幾何內都很重要,在各領域內的形式均略有不同,可標計為 、RP2 或 P2(R) 等符號。還有許多其他的投影平面,包括無限(如複投影平面)與有限(如法諾平面)之類型。 投影平面是二維投影空間,但並不是所有投影平面都可以嵌入三維投影空間內。投影平面是否能嵌入三維投影空間取決於該平面是否為笛沙格平面。.

新!!: 黎曼曲面和射影平面 · 查看更多 »

上半平面

上半平面(upper half-plane)H是一数学名詞,是指由虛部為正的复数組成的集合: 此詞語的由來是因為虛數x + iy常視為是在笛卡儿坐标系下,平面中的點(x,y),若垂直方向為Y軸時,其上半平面對應X軸以上的區域,因此也對應y > 0區域的複數。 上半平面是許多複分析中重要函數的定義域,特別是模形式。y n,最大对称,單連通,截面曲率為-1的n維黎曼流形。此表示方式下,上半平面為H2因為其實維度為2。 数论中的希爾伯特模形式和一些函數在許多上半平面組成的空間Hn有關。另一個數論研究者感興趣的空間是Hn,是西格爾模形式的定義域。.

新!!: 黎曼曲面和上半平面 · 查看更多 »

平方根

在數學中,一個數x的平方根y指的是滿足y^2.

新!!: 黎曼曲面和平方根 · 查看更多 »

亏格

数学上,亏格(genus)有几个不同但密切相关的意思:.

新!!: 黎曼曲面和亏格 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

新!!: 黎曼曲面和代数几何 · 查看更多 »

代數曲線

在代數幾何中,一條代數曲線是一維的代數簇。最典型的例子是射影平面\mathbb^2上由一個齊次多項式f(X,Y)定義的零點。.

新!!: 黎曼曲面和代數曲線 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

新!!: 黎曼曲面和开集 · 查看更多 »

佐恩引理

佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设(P, \le)是一个偏序集,它的一个子集T称为是一个全序子集,如果对于任意的s, t \in T有s \le t或t \le s。而T称为是有上界的,如果P中存在一个元素u,使得对于任意的t \in T,都有t \le u。在上述定义中,并不要求u一定是T中的元素。而一个元素m \in T称为是極大的,如果x \in T且x \ge m,则必然有x.

新!!: 黎曼曲面和佐恩引理 · 查看更多 »

凯勒流形

在数学中,一个凯勒流形(Kähler manifold)是具有满足一个可积性条件的酉结构(一个U(''n'')-结构)的流形。特别地,它是一个黎曼流形 、复流形以及辛流形,这三个结构两两相容。 这个三位一体结构对应于将酉群表示为一个交集: 若没有任何可积性条件,类似的概念是一个殆埃尔米特流形。如果辛结构是可积的(但复结构不要求),则这个概念是殆凯勒流形;如果複结构是可积的(但辛结构不要求),则为埃尔米特流形。 凯勒流形以数学家埃里希·凯勒命名,在代数几何中占有重要的地位:它们是複代数簇的一个微分几何推广。.

新!!: 黎曼曲面和凯勒流形 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 黎曼曲面和函数 · 查看更多 »

全纯函数

全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.

新!!: 黎曼曲面和全纯函数 · 查看更多 »

克莱因瓶

在数学领域中,克莱因瓶(Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。 要想像克萊因瓶的結構,可先試想一個底部鏤空的紅酒瓶。現在延長其頸部,向外扭曲後伸進瓶子的內部,再與底部的洞相連接。 和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。 其名稱可能源自德語中的「Kleinsche Fläche」(克萊因平面),後來被誤解為「Kleinsche Flasche」(克萊因瓶)。德語最終也沿用了「克萊因瓶」這種稱呼。.

新!!: 黎曼曲面和克莱因瓶 · 查看更多 »

图册 (拓扑学)

在数学,特别是在拓扑中,一个图册(atlas)描述了一个流形如何装备一个微分结构。每一小块由一个卡(chart)给出(也称为坐标卡coordinate chart或局部坐标系local coordinate system))。以圖冊來定義流形的概念是由夏尔·埃雷斯曼於1943年所提出。 在给出图册形式定义之前,我们回忆起流形M上一个卡定义为从M的一个开集U到\mathbb^n中开集V的一个同胚映射\phi。如果(U_, \varphi_)与(U_, \varphi_)是M的两个卡使得U_ \cap U_非空,则定义了转移映射(transition map) 注意到因为\varphi_与\varphi_都是同胚,转移映射也是同胚。所以,转移映射已经赋予了某种相容性,使得从一个卡上的坐标系变到另一个卡上的坐标系是连续的。 那么流形M上一个图册是一族M上的卡\mathcal.

新!!: 黎曼曲面和图册 (拓扑学) · 查看更多 »

球可以指:.

新!!: 黎曼曲面和球 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

新!!: 黎曼曲面和紧空间 · 查看更多 »

莫比乌斯带

莫比乌斯带(Möbiusband)又譯梅比斯環、莫比乌斯环或麦比乌斯带,是一种只有一个面(表面)和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家莫比乌斯和约翰·李斯丁在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦類似。 莫比乌斯带本身具有很多奇妙的性质。如果从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是梅比斯環),再把剛剛做出那個把纸带的端头扭转了两次再结合的环從中間剪開,則變成兩個環。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一個三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个Paradromic。 莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的發明比莫比乌斯帶還更要早。.

新!!: 黎曼曲面和莫比乌斯带 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 黎曼曲面和行列式 · 查看更多 »

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

新!!: 黎曼曲面和複分析 · 查看更多 »

高斯-博内定理

在微分几何中,高斯-博内定理(亦称高斯-博内公式)是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述。它是以卡尔·弗里德里希·高斯和皮埃尔·奥西安·博内命名的,前者发现了定理的一个版本但从未发表,后者1848年发表了该定理的一个特例。.

新!!: 黎曼曲面和高斯-博内定理 · 查看更多 »

豪斯多夫空间

在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

新!!: 黎曼曲面和豪斯多夫空间 · 查看更多 »

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

新!!: 黎曼曲面和黎曼球面 · 查看更多 »

黎曼-罗赫定理

黎曼–罗赫定理(Riemann–Roch theorem)是数学中的一个重要工具,在复分析和代数几何中的应用尤为广泛。利用该定理,可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。 此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。.

新!!: 黎曼曲面和黎曼-罗赫定理 · 查看更多 »

黎曼映射定理

在數學中,黎曼映射定理是複分析最深刻的定理之一,此定理分類了\mathbb的單連通開子集。.

新!!: 黎曼曲面和黎曼映射定理 · 查看更多 »

黎曼流形

黎曼流形(Riemannian manifold)是一個微分流形,其中每點p的切空間都定義了點積,而且其數值隨p平滑地改變。它容許我們定義弧線長度、角度、面積、體積、曲率、函數梯度及向量域的散度。 每個Rn的平滑子流形可以导出黎曼度量:把Rn的點積都限制於切空間內。實際上,根据纳什嵌入定理,所有黎曼流形都可以這樣产生。 我們可以定義黎曼流形為和Rn的平滑子流形是等距同构的度量空間,等距是指其内蕴度量(intrinsic metric)和上述从Rn导出的度量是相同的。这對建立黎曼幾何是很有用的。 黎曼流形可以定义为平滑流形,其中给出了一个切丛的正定二次形的光滑截面。它可產生度量空間: 如果γ: → M是黎曼流形M中一段連續可微分的弧線,我們可以定義它的長度L(γ)為 (注意:γ'(t)是切空間M在γ(t)點的元素;||·||是切空間的內積所得出的範數。) 使用这个长度的定义,每个连通的黎曼流形M很自然的成为一个度量空間(甚至是長度度量空間):在x與y兩點之間的距離d(x, y)定義為: 虽然黎曼流形通常是弯曲的,“直線”的概念依然存在:那就是測地線。 在黎曼流形中,測地線完备的概念,和拓撲完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容。.

新!!: 黎曼曲面和黎曼流形 · 查看更多 »

黎曼曲率張量

在微分几何中,黎曼曲率张量或黎曼張量是表达黎曼流形的曲率的标准方式,更普遍的,它可以表示有仿射联络的流形的曲率,包括无扭率或有撓率的。曲率张量通过列维-奇维塔联络(更一般的,一个仿射联络)\nabla(或者叫协变导数)由下式给出: 这里R(u,v)是一个流形切空间的线性变换;它对于每个参数都是线性的。 注意有些作者用相反的符号定义曲率.

新!!: 黎曼曲面和黎曼曲率張量 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 黎曼曲面和自然對數 · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

新!!: 黎曼曲面和雅可比矩阵 · 查看更多 »

波恩哈德·黎曼

格奥尔格·弗雷德里希·波恩哈德·黎曼《世界人名翻譯大辭典》,2342頁,「Riemann, Berhard」條。 (德語:Georg Friedrich Bernhard Riemann,,)德国数学家,黎曼几何学创始人,复变函数论创始人之一。.

新!!: 黎曼曲面和波恩哈德·黎曼 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

新!!: 黎曼曲面和流形 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 黎曼曲面和数学 · 查看更多 »

拓扑

拓扑有以下領域的意義與應用:.

新!!: 黎曼曲面和拓扑 · 查看更多 »

曲率

曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意義。 曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。.

新!!: 黎曼曲面和曲率 · 查看更多 »

曲面

在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.

新!!: 黎曼曲面和曲面 · 查看更多 »

重定向到这里:

黎曼面

传出传入
嘿!我们在Facebook上吧! »