徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

复平面

指数 复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

52 关系: 加法卡斯帕尔·韦塞尔单位圆反三角函数可定向性可數集双射向量复数奇函數與偶函數定义域一致收斂乘法幅角二元数弧度函数全纯函数值域球面笛卡儿坐标系笛卡儿平面笛卡儿积级数绝对值無窮乘積留数定理複分析解析函数路徑積分黎曼球面黎曼ζ函數黎曼曲面赤道闵可夫斯基空间零点虚部Γ函数S平面Z轉換极坐标系极点极点 (复分析)欧几里得几何欧拉-马歇罗尼常数欧拉公式星座图 (数字通信)无穷远点旋转数学...拓扑拉普拉斯变换 扩展索引 (2 更多) »

加法

加法是基本的算术運算。加法即是將二個以上的數,合成一個數,其結果称為和。加法與減、乘、除合稱「四則運算」。 表達加法的符號為加號(+)。進行加法時以加號將各項連接起來。把和放在等號(.

新!!: 复平面和加法 · 查看更多 »

卡斯帕尔·韦塞尔

卡斯帕爾·韋塞爾(Caspar Wessel)(),挪威-丹麥數學家。 他生於挪威阿克什胡斯郡的韋斯特比自治區,成長於一個有十四個孩子的家,排行第六。1763年,他完成中學後,因為當時挪威沒有大學,往丹麥的哥本哈根大學學習。 丹麥皇家科學院開展了地形測量計劃,使用三角測量以決定地理坐標。卡斯帕爾的兄長,Ole Christopher,也是參與者之一。1764年Ole Christopher需要一名助手,便找了他的弟弟。他頗為貧困,除了測量之外,還要量地圖。 測量師的工具涉及幾何學,激發他探究複數的幾何意義。1799年,其論文Om directionens analytiske betegning(On the Analytical Representation of Direction)刊於丹麥皇家科學與文學會。因為語言問題,它受到的注意很少,其結果後來阿爾岡(1806年)和高斯(1831年)都獨立發現了。 比他大三歲的兄長約翰·赫爾曼·韋塞爾(:en:Johan Herman Wessel)是詩人。.

新!!: 复平面和卡斯帕尔·韦塞尔 · 查看更多 »

单位圆

在数学中,单位圆是指半径为单位长度的圆,通常为欧几里得平面直角坐标系中圆心为(0,0)、半径为1的圆。单位圆对于三角函数和复数的坐标化表示有着重要意义。单位圆通常表示为S1。多维空间中,单位圆可推广为单位球。 如果单位圆上的点 (x, y)位于第一象限,那么x与y是斜边长度为1的直角三角形的两条边,根据勾股定理,x与y满足方程: 由于对于所有的x来说x2.

新!!: 复平面和单位圆 · 查看更多 »

反三角函数

在数学中,反三角函数是三角函数的反函数。.

新!!: 复平面和反三角函数 · 查看更多 »

可定向性

欧几里得空间R3中一个曲面S是可定向(orientable)的如果一个二维图形(比如)沿着曲面移动后回到起点不能使它看起来像它的镜像()。否则曲面是不可定向(non-orientable)的。 更确切地,应用于非嵌入曲面,一个曲面可定向如果不存在从二维球B与单位区间的乘积到曲面的连续函数f: B\times \to S,使得f(b,t).

新!!: 复平面和可定向性 · 查看更多 »

可數集

在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.

新!!: 复平面和可數集 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 复平面和双射 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 复平面和向量 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 复平面和复数 · 查看更多 »

奇函數與偶函數

在數學裡,偶函數和奇函數是滿足著相對於加法逆元之特定對稱關係的函數。這在數學分析的許多領域中都很重要,特別是在冪級數和傅立葉級數的理論裡。其命名是因為冪函數的冪的奇偶性滿足下列條件:若n為一偶數,則函數xn是偶函數,若n為一奇數,則為奇函數。.

新!!: 复平面和奇函數與偶函數 · 查看更多 »

定义域

定义域(Domain),是函数自变量所有可取值的集合。给定函数f:A\rightarrow B,其中A被称为是f的定义域,记作D_。f映射到陪域中的所有值的集合称为f的值域,记作f(A)或R_。 例如,函数f(x).

新!!: 复平面和定义域 · 查看更多 »

一致收斂

在數學中,--性(或稱--)是函數序列的一種收斂定義。其概念可敘述為函數列 一致收斂至函數 代表所有的 , 收斂至 有相同的收斂速度。由於它較逐點收斂更強,故能保持一些重要的分析性質,例如連續性、黎曼可積性。.

新!!: 复平面和一致收斂 · 查看更多 »

乘法

乘法(Multiplication),加法的連續運算,同一数的若干次连加,其運算結果稱為積(Product)。 因為華人地區有將四則運算的被運算數和運算數統一位置,所以前者是被乘數後者是乘數,使用中文敘述為n個a。.

新!!: 复平面和乘法 · 查看更多 »

幅角

数学中,复數的辐角是指复数在复平面上对应的向量和正向实数轴所成的有向角。复数的辐角值可以是一切实数,但由于相差360^\circ(即弧度2 \pi)的辐角在实际应用中没有差别,所以定义复数的辐角主值为辐角模360^\circ(2 \pi)后的余数,定义取值范围在0^\circ到360^\circ(2 \pi)之间。复数的辐角是复数的重要性质,在不少理论中都有重要作用。.

新!!: 复平面和幅角 · 查看更多 »

二元数

在線性代數中,二元數(Dual number)是實數的推廣。二元數中有一個「二元數單位」ε,它的平方ε2.

新!!: 复平面和二元数 · 查看更多 »

弧度

弧度又稱弳度,是平面角的單位,也是國際單位制導出單位。單位弧度定義為圓弧長度等於半徑時的圓心角。角度以弧度給出時,通常不寫弧度單位,或有時記為rad(㎭)。平面角和立體角皆無因次。 一個完整的圓的弧度是2π,所以2π rad.

新!!: 复平面和弧度 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 复平面和函数 · 查看更多 »

全纯函数

全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.

新!!: 复平面和全纯函数 · 查看更多 »

值域

在数学中,函数的值域(Range)是由定义域中一切元素所能產生的所有函數值的集合。有时候也称为函数的像。 给定函数f: A\rightarrow B,集合f(A)被称为是f的值域,记为R_。值域不应跟陪域B相混淆。一般来说,值域只是陪域的一个子集。.

新!!: 复平面和值域 · 查看更多 »

球面

球面 (sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆 ”包围着“圆盘”那样)。 就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间中离给定的点距离相同的点的集合 。 这个距离 是球的半径 ,球(ball)则是由离给定点距离小于 的所有点构成的几何体,而这个给定点就是球心。球的半径和球心也是球面的半径和中心。两端都在球面上的最长线段通过球心,其长度是其半径的两倍;它是球面和球体的直径 。 尽管在数学之外,术语“球面”和“球”有时可互换使用,但在数学中是明确区分的:球面是一种嵌在三维欧几里得空间内的二维封闭曲面,而球是一种三维图形,其包括球面和球面内部的一切(闭球),不过更常见的定义是只包括球面内部的所有点,不包括球面上的点(开球)。这种区别并不总是保持不变,尤其是在旧的数学文献里,sphere(球面)被当作固体。这与在平面上混用术语“圆”(circle)和“圆盘”(disk)的情况类似。.

新!!: 复平面和球面 · 查看更多 »

笛卡儿坐标系

#重定向 笛卡尔坐标系.

新!!: 复平面和笛卡儿坐标系 · 查看更多 »

笛卡儿平面

#重定向 笛卡尔坐标系.

新!!: 复平面和笛卡儿平面 · 查看更多 »

笛卡儿积

在数学中,两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对組成的集合,其中有序對的第一个对象是X的成员,第二个对象是Y的成员。 舉個實例,如果集合X是13个元素的点数集合,而集合Y是4个元素的花色集合,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合。 笛卡儿积得名于笛卡儿,因為這概念是由他建立的解析几何引申出來.

新!!: 复平面和笛卡儿积 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 复平面和级数 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 复平面和绝对值 · 查看更多 »

無窮乘積

在數學中,對於複數序列 a1, a2, a3,...,無窮乘積 \prod_^ a_n.

新!!: 复平面和無窮乘積 · 查看更多 »

留数定理

在复分析中,留数定理(又叫残数定理)是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推论。.

新!!: 复平面和留数定理 · 查看更多 »

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

新!!: 复平面和複分析 · 查看更多 »

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

新!!: 复平面和解析函数 · 查看更多 »

路徑積分

路徑積分可能指的是:.

新!!: 复平面和路徑積分 · 查看更多 »

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

新!!: 复平面和黎曼球面 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 复平面和黎曼ζ函數 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

新!!: 复平面和黎曼曲面 · 查看更多 »

赤道

赤道通常指地球表面的点随地球自转产生的轨迹中周长最长的圆周线,长。如果把地球看做一个绝对的球体的话,赤道距离南北两极相等。它把地球分为南北两半球,其以北是北半球,以南是南半球,是划分纬度的基线,赤道的纬度为0°。赤道的78.7%被海洋覆盖,余下的21.3%为陆地。除地球外,其他行星及天体也有类似的赤道。.

新!!: 复平面和赤道 · 查看更多 »

闵可夫斯基空间

#重定向 閔考斯基時空.

新!!: 复平面和闵可夫斯基空间 · 查看更多 »

零点

对全纯函数f,称满足f(a).

新!!: 复平面和零点 · 查看更多 »

虚部

#重定向 复数 (数学).

新!!: 复平面和虚部 · 查看更多 »

Γ函数

\Gamma \,函数,也叫做伽瑪函數(Gamma函数),是階乘函數在實數與複數上的擴展。對於實數部份為正的複數z,伽瑪函數定義為: 此定義可以用解析開拓原理拓展到整個複數域上,非正整數外。 如果z為正整數,則伽瑪函數定義為: 這顯示了它與階乘函數的聯繫。可見,伽瑪函數將n!拓展到了實數與複數域上。 在概率論中常見此函數,在組合數學中也常見。.

新!!: 复平面和Γ函数 · 查看更多 »

S平面

在數學及工程上,s平面是進行拉氏轉換後複平面的名稱。s平面是數學模型,可以不用處理時域下以時間為基礎的函數,改為處理頻域下的方程式,在工程及物理學上是圖象式的分析工具。 時間t的實函數f(t)可以進行s轉換轉換到s平面,作法是和e^(s為複數)相乘後再積分,時間範圍為0 到\infty,積分後的結果就是轉換到s平面下的函數。 一種了解此方程的方法是考慮傅利葉分析。在傅利葉分析中,將正弦及餘弦和原信號相乘,所得到的積分可以看出某一頻率下的信號(頻域下某一頻率的能量)。s轉換也有類似的效果,而且e-st不止考慮頻率,也考慮了e-t的效果。因此s轉換不止有頻率的資訊,也有衰減量的資訊,例如有阻尼的弦波就可以用s轉換準確的表示。 s轉換常稱為拉氏轉換。在s平面上,乘s有類似在時域中微分的效果,除以s則相當於積分。 可以分析s平面上方程式的複數根,並繪製在复平面上,可以看到此系統頻率響應及穩定性的相關資訊。.

新!!: 复平面和S平面 · 查看更多 »

Z轉換

在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.

新!!: 复平面和Z轉換 · 查看更多 »

极坐标系

在数学中,极坐标系(Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。.

新!!: 复平面和极坐标系 · 查看更多 »

极点

极点可以指:.

新!!: 复平面和极点 · 查看更多 »

极点 (复分析)

亚纯函数的极点是一种特殊的奇点,它的表现如同z-a.

新!!: 复平面和极点 (复分析) · 查看更多 »

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

新!!: 复平面和欧几里得几何 · 查看更多 »

欧拉-马歇罗尼常数

#重定向 歐拉-馬斯刻若尼常數.

新!!: 复平面和欧拉-马歇罗尼常数 · 查看更多 »

欧拉公式

欧拉公式(Euler's formula,又稱尤拉公式)是在複分析领域的公式,将三角函数與複數指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,對任意實数x,都存在 其中e是自然對数的底數,i是虛數單位,而\cos和\sin則是餘弦、正弦對應的三角函数,参数x則以弧度为单位。這一複數指數函數有時還寫作\operatorname(x)(cosine plus i sine,余弦加i正弦)。由於該公式在x為複數時仍然成立,所以也有人將這一更通用的版本稱為尤拉公式。 当 x.

新!!: 复平面和欧拉公式 · 查看更多 »

星座图 (数字通信)

数字通信领域中,经常将数字信号在复平面上表示,以直观的表示信号以及信号之间的关系。这种图示就是星座图。 数字信号之所以能够用复平面上的点表示,是因为数字信号本身有着复数的表达形式。虽然信号一般都需要调制到较高频率的载波上传输,但是最终的检测依然是在基带上进行。因此已经调制的带通数字信号s(t)可以用其等效低通形式s_l (t)表示。一般来说,等效低通信号是复数,即 s_l \left(t \right).

新!!: 复平面和星座图 (数字通信) · 查看更多 »

无穷远点

无穷远点,又称为理想点,是一个加在实数轴上后得到实射影直线\mathbbP^1的点。实射影直线与扩展的实数轴不是一样的,扩展的实数轴有两个不同的无穷远点。 无穷远点也可以加在复平面\mathbb^1上,于是把它变成一个闭曲面,称为黎曼球面\mathbbP^1。(把球面穿一个孔,并把所得到的边拉开来,便得到一个平面;相反的过程便把复平面变为\mathbbP^1:在平面外加上一个点,并把平面向这个点包起来,便得到球面。) 这个结构可以推广到任何拓扑空间。所得到的空间称为原空间的单点紧化。因此,圆形是直线的单点紧化,而球面则是平面的单点紧化。 现在考虑实射影平面\mathbbP^2上的一对平行直线。由于这对直线是平行的,因此它们相交于无穷远点,这个点位于\mathbbP^2的无穷远直线上。更进一步,这两条直线都\mathbbP^2上的射影直线:每一条都有自己的无穷远点。当一对射影直线平行时,它们相交于它们公共的无穷远点。.

新!!: 复平面和无穷远点 · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

新!!: 复平面和旋转 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 复平面和数学 · 查看更多 »

拓扑

拓扑有以下領域的意義與應用:.

新!!: 复平面和拓扑 · 查看更多 »

拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

新!!: 复平面和拉普拉斯变换 · 查看更多 »

重定向到这里:

复数平面複平面

传出传入
嘿!我们在Facebook上吧! »