徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

零點能量

指数 零點能量

零點能量(可簡稱零點能)物理學中是量子力學所描述的物理系統會有的最低能量,此時系統所處的態稱為基態;所有量子力學系統都有零點能量。這個辭彙起源於量子諧振子處在基態時,量子數為零的考量。 在量子場論中,這個辭彙和真空能量是等義詞,指的空無一物的空間仍有此一定能量存在,對一些系統可以造成擾動,並且導致一些量子電動力學會出現的現象,例如蘭姆位移與卡西米爾效應;它的效應可在納米尺度的元件直接觀測的到。 在宇宙論中,真空能量被視為宇宙常數的來源,和造就宇宙加速膨脹的暗能量相關。 因為零點能量是一系統可能持有的最低能量,因此此項能量是無法自系統移除。儘管如此,零點能量的概念以及自真空汲取「免費能量」的可能性引起業餘發明者的注目——許多「永動機」或稱「免費能量裝置」等的提案都運用這項概念來解釋,但由於從較低或相同的能量狀態之中汲取能量違反了熱力學第二定律並造成熵的降低,運用零點能量被科學界認為是不可能的。這項熱潮以及相伴的趣味理論詮釋促成了大眾文化中「零點能量」概念的成長,常出現在科幻書刊、遊戲、電影等處。.

65 关系: 加速度动量基本粒子原子卡西米爾效應奈米科技宇宙加速膨脹宇宙学宇宙學常數万有理论亨得里克·卡西米爾廣義相對論引力位置微擾理論 (量子力學)哈密頓算符光子科幻空間經典物理學纳米维尔纳·海森堡美国国家航空航天局真空真空災變真空能量热力学第二定律爾格瓦爾特·能斯特电磁场無限深方形阱異常磁矩物理学家盎魯效應荷兰頻率马克斯·普朗克諧振子质量费曼图能级能量蘭姆位移阿尔伯特·爱因斯坦量子力学量子场论量子諧振子...量子電動力學自发发射電磁輻射虛粒子暗能量接地核子永动机波茲曼常數温度时间旋磁比慣性普朗克尺度普朗克常数 扩展索引 (15 更多) »

加速度

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母\mathbf表示,在国际单位制中的单位为米每二次方秒(\mathrm)。加速度是速度矢量對于时间的变化率,描述速度的方向和大小变化的快慢。 在经典力学中,牛顿第二定律说明了力和加速度成正比,這定律又稱為「加速度定律」。假設施加於物體的淨外力為零,則加速度為零,速度為常數,由於動量是質量與速度的乘積,所以動量守恆。在電動力學裏,呈加速度運動的帶電粒子會發射电磁辐射。.

新!!: 零點能量和加速度 · 查看更多 »

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 零點能量和动量 · 查看更多 »

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

新!!: 零點能量和力 · 查看更多 »

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

新!!: 零點能量和基本粒子 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 零點能量和原子 · 查看更多 »

卡西米爾效應

-- 卡西米爾效應(Casimir effect)是由荷蘭物理學家亨德里克·卡西米爾(Hendrik Casimir)於1948年提出的一種現象,此效應隨後被偵測到,並以卡西米爾為名以紀念他。其根據量子場論的「真空不空」觀念——即使沒有物質存在的真空仍有能量漲落,而提出此效應:真空中兩片中性(不帶電)的金屬板會出現吸力;這在古典理論中是不會出現的現象。这种效应只有在两物体的距离非常之小时才可以被检测到。例如,在亚微米尺度上,该效应导致的吸引力成为中性导体之间主要作用力。事实上在10纳米间隙上(大概是一个原子尺度的100倍),卡西米爾效應能产生1个大气压的压力(101.3千帕)。一对中性原子之间的范德瓦耳斯力是一种类似的效应。.

新!!: 零點能量和卡西米爾效應 · 查看更多 »

奈米科技

#重定向 纳米技术.

新!!: 零點能量和奈米科技 · 查看更多 »

宇宙加速膨脹

宇宙加速膨脹是宇宙的膨脹速度越來越快的現象。以天文學術語來說,就是宇宙標度因子 a(t) 的二次導數是正值,這意味著星系遠離地球的速度,隨著時間演進,應該會持續地增快。這速度是哈勃定律裏所提到的退行速度。於1998年觀測Ia超新星得到的數據,提示宇宙的膨脹速度正在加快。物理學者索尔·珀尔马特、布莱恩·施密特與亚当·里斯「透過觀測遙遠超新星而發現了宇宙加速膨脹」,因此,共同榮獲2006年邵逸夫天文學獎與2011年諾貝爾物理學獎。.

新!!: 零點能量和宇宙加速膨脹 · 查看更多 »

宇宙学

宇宙學(英文:Cosmology)或宇宙論,這個詞源自於希臘文的κοσμολογία(cosmologia, κόσμος (cosmos) order + λογια (logia) discourse)。宇宙學是對宇宙整體的研究,並且延伸探討至人類在宇宙中的地位。雖然宇宙學這個詞是最近才有的,人們對宇宙的研究已經有很長的一段歷史,牽涉到科學、哲學、神秘学以及宗教。.

新!!: 零點能量和宇宙学 · 查看更多 »

宇宙學常數

宇宙學常數(cosmological constant)或宇宙常數由阿爾伯特·愛因斯坦首先提出,現前常標為希臘文「Λ」,與度規張量相乘後成為宇宙常數項\Lambda g_而添加在愛因斯坦方程式中,使方程式能有靜態宇宙的解。若不加上此項,則廣義相對論所得原版本的愛因斯坦方程式會得到動態宇宙的結果。 這是出於愛因斯坦對靜態宇宙的哲學信念。在哈伯提出膨脹宇宙的天文觀測結果哈伯紅移後,愛因斯坦放棄宇宙學常數,認為是他「一生中最大的錯誤」。 但是1998年天文物理與宇宙學對宇宙加速膨脹的研究則讓宇宙學常數死而復生,認為雖然其值很小,但可能不為零。宇宙常數項的貢獻被認為與暗能量有關。.

新!!: 零點能量和宇宙學常數 · 查看更多 »

万有理论

萬有理論(Theory of Everything或ToE)指的是假定存在的一種具有總括性、一致性的物理理論框架,能夠解釋宇宙的所有物理奧秘。經過幾個世紀奮勉不懈的努力,發展出兩種理論框架:廣義相對論與量子場論。它們的總合,可以說是最接近想像中的萬有理論。廣義相對論專注於研究引力來明白宇宙的大尺度與高質量現象,例如恆星、星系、星系團等等。量子場論專注於研究非引力來明白宇宙的小尺度與低質量現象,例如,亞原子粒子、原子、分子等等。量子場論成功地給出標準模型,並且能夠按照大統一理論將弱力、強力與電磁力這三種非引力統合在一起。 經過多年的研究,這兩種理論分別在適用範圍內做出的預測幾乎都已被實驗肯定。根据物理学家的研究结果,廣義相對論與量子場論互不相容,即對於某些狀況,两者不可能同时是正確的。由於這兩種理論的適用範圍不同,對於大多數狀況,只需用到其中一種理論。這兩種理論的不相容之處在非常小尺度與高質量範圍才成为显著的问题,例如,在黑洞內部、在宇宙大爆炸之后的极短时间。為了解釋這衝突,透露更深層實在、將引力與其它三種作用力統合在一起的理論框架必需被找出,和諧地将廣義相對論與量子場論整合在一起,原則而言,成為能夠描述所有物理現象的單一理論。近期,在追逐這艱難目標的過程中,量子引力已成為積極研究領域。 万有理论用来指那些试图统合自然界四种基本相互作用:引力相互作用、强相互作用、弱相互作用和电磁相互作用成為一体的理论,是在电磁作用和弱相互作用連成一体的电弱作用理论之後,再加入強相互作用連成一体的大統一理論基础之後,又加上引力作用連成一体的理論。目前被认为最有可能成功的萬有理论是弦理论和圈量子引力論。.

新!!: 零點能量和万有理论 · 查看更多 »

亨得里克·卡西米爾

#重定向 亨德里克·卡西米爾.

新!!: 零點能量和亨得里克·卡西米爾 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 零點能量和廣義相對論 · 查看更多 »

引力

重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.

新!!: 零點能量和引力 · 查看更多 »

位置

位置可以指:.

新!!: 零點能量和位置 · 查看更多 »

微擾理論 (量子力學)

量子力學的微擾理論(perturbation theory)引用一些數學的微扰理论的近似方法於量子力學。當遇到比較複雜的量子系統時,這些方法試著將複雜的量子系統簡單化或理想化,變成為有精確解的量子系統,再應用理想化的量子系統的精確解,來解析複雜的量子系統。微扰理论从可以获得精确解或易于得到近似解的相对简单体系出发,在這簡單系統的哈密頓量(Hamiltonian)裏,加上一個很弱的微擾,變成了較複雜系統的哈密頓量。假若這微擾不是很大,複雜系統的許多物理性質(例如,能級,量子態)可以表達為簡單系統的物理性質加上一些修正。這樣,從研究比較簡單的量子系統所得到的知識,可以進而研究比較複雜的量子系統。 微擾理論可以分為兩類,不含時微擾理論(Time-independent perturbation theory)與含時微擾理論(Time-dependent perturbation theory)。在不含時微擾理論中,哈密顿量的微扰项不显含時間;而含時微擾理論的微擾哈密頓量含時間,詳見含時微擾理論。本篇文章只講述不含時微擾理論。此後凡提到微擾理論,皆指不含時微擾理論。.

新!!: 零點能量和微擾理論 (量子力學) · 查看更多 »

場在漢語中,指平坦的空地。有很多特定用法和不同含義,主要如下:.

新!!: 零點能量和场 · 查看更多 »

哈密頓算符

#重定向 哈密顿算符.

新!!: 零點能量和哈密頓算符 · 查看更多 »

光子

| mean_lifetime.

新!!: 零點能量和光子 · 查看更多 »

科幻

#重定向 科學幻想.

新!!: 零點能量和科幻 · 查看更多 »

空間

間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.

新!!: 零點能量和空間 · 查看更多 »

經典物理學

-- 經典物理學所涉及的物理學領域通常是一些在量子力學與相對論之前發展出來的理論。經典物理學所概括的精確範圍必須依上下文而定。當研討狹義相對論時,經典物理學指的是在相對論之前的牛頓物理,也就是說,以在相對論與量子力學之前所發展出來的理論為基礎的物理學。當研討廣義相對論時,經典物理學指的是將狹義相對論納入考量後的牛頓物理。當研討量子力學時,它指的是包括狹義相對論與廣義相對論在內的非量子物理。換句話說,它指的是在所研討的物理領域之前形成的物理學。.

新!!: 零點能量和經典物理學 · 查看更多 »

纳米

纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).

新!!: 零點能量和纳米 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 零點能量和维尔纳·海森堡 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

新!!: 零點能量和美国国家航空航天局 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

新!!: 零點能量和真空 · 查看更多 »

真空災變

從航海家探測衛星測量到的數據所推斷出的真空能量密度上限為1014 GeV/m3,而從量子場論估算出的零點能密度為10121 GeV/m3。兩個數值難以置信地相差了107個數量級 。在宇宙學裏,這差異稱為真空災變(vacuum catastrophe)。物理史上從未見到這麼大的差距,物理學者認為這是當今物理理論的重大瑕疵。 1916年,瓦爾特·能斯特最先發現與提出真空災變問題 ,並且疑問這麼特大的真空能量會對重力效應造成的結果 。 這問題可能對於引力與量子理論的統一給出很有價值的線索,因此有很多理論物理學者致力於這方面的研究。.

新!!: 零點能量和真空災變 · 查看更多 »

真空能量

真空能量(Vacuum energy)是一種存在於空間中的背景能量,即使在沒有物質的空間(稱為自由空間)亦然存在。真空能量導致了多數基本力的存在。它的效應可以在各式各樣的實驗中觀測到,例如光的自发辐射(spontaneous emission)、伽瑪輻射、卡西米爾效應、范德瓦耳斯力、蘭姆位移等等。另外它也被認為與物理宇宙學中的宇宙常數項有關。.

新!!: 零點能量和真空能量 · 查看更多 »

热力学第二定律

热力学第二定律(second law of thermodynamics)是热力学的三条基本定律之一,表述热力学过程的不可逆性——孤立系统自發地朝著熱力學平衡方向──最大熵狀態──演化,同样地,第二类永动机永不可能实现。 這一定律的歷史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助魯道夫·克勞修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等。.

新!!: 零點能量和热力学第二定律 · 查看更多 »

爾格

格(英文:Erg)是熱量和做功的單位。定义为1达因的力使物体在力的方向上移动一厘米所作的功。 1尔格.

新!!: 零點能量和爾格 · 查看更多 »

瓦爾特·能斯特

特·赫爾曼·能斯特(Walther Hermann Nernst,),德国化學家,他提出了熱力學第三定律,这条定律對的計算尤其重要,他因此榮獲1920年的諾貝爾化學獎。能斯特促進了現代物理化學的確立,對電化學、熱力學、固態化學及光化學有所貢獻,并提出了能斯特方程。.

新!!: 零點能量和瓦爾特·能斯特 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

新!!: 零點能量和电磁场 · 查看更多 »

無限深方形阱

在物理學裏,無限深方形阱(infinite square potential),又稱為無限深位勢阱(infinite potential well),是一個阱內位勢為 0 ,阱外位勢為無限大的位勢阱。思考一個或多個粒子,永遠地束縛於無限深位勢阱內,無法逃出。關於這些粒子的量子行為的問題,稱為無限深方形阱問題,又稱為無限深位勢阱問題,盒中粒子問題(particle in a box problem),是一個理論問題。假若,阱內只有一個粒子,則稱為單粒子無限深方形阱問題。假若,阱內有兩個粒子,則稱為雙粒子無限深方形阱問題。假若,這兩個粒子是完全相同的粒子,則問題又複雜許多,稱為雙全同粒子無限深方形阱問題。在這裏,只討論單粒子無限深方形阱問題。 在經典力學裏,應用牛頓運動定律,可以非常容易地求得無限深方形阱問題的解答。假設粒子與阱壁的碰撞是彈性碰撞,粒子的動能保持不變。則這粒子在方形阱的兩阱壁之間來回移動,碰撞來,碰撞去,而速率始終保持不變。在任意時間,粒子在阱內各個位置的機率是均勻的。 在量子力學裏,這問題突然變得很有意思。許多基要的概念,在這問題的解析中,呈現了出來。由於問題的理想化與簡易化,應用薛丁格方程,可以很容易地,雖然並不是很直覺地,求得解答。滿足這薛丁格方程的能量本徵函數,是表達粒子量子態的波函數。每一個能量本徵函數的能量,只能是離散能級譜中的一個能級。很令人驚訝的是,離散能級譜中最小的能級不是 0 ,而是一個有限值,稱為零點能量!這系統的最小能級量子態的能級不是 0 。 更加地,假若測量粒子的位置,則會發現粒子在阱內各個位置的機率大不相同。在有些位置,找到粒子的機率是 0 ,絕對找不到粒子。這些結果與經典力學的答案迥然不同。可是,這些結果所根據的原理,早已在許多精心設計的實驗中,廣泛地證明是正確無誤的。.

新!!: 零點能量和無限深方形阱 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 零點能量和熵 · 查看更多 »

異常磁矩

在量子電動力學中,一個粒子的異常磁矩(anomalous magnetic moment)就是除去該粒子的磁矩(又稱磁偶極矩,用於量度磁源的強度)之外,從量子力學而來的額外影響,一般由带圈的費曼圖贡献。 對應樹狀費曼圖的“狄拉克”磁矩(一般被視為經典結果)可由狄拉克方程求得。一般以表示;狄拉克方程預測g.

新!!: 零點能量和異常磁矩 · 查看更多 »

物理学家

物理學家是指受物理學訓練、並以探索物質世界的組成和運行規律(即物理學)為目的科學家。研究範疇可細至構成一般物質的微細粒子,大至宇宙的整體,不同的範圍都會有相對的專家。對應於物理學分為理論物理學和實驗物理學,物理学家也可以分為理論物理學家和實驗物理學家。物理學中理論和實驗都是必不可缺的组成部分,所以有时候這樣的分類很難界定,只不過在一個物理學家更偏重理論的情况下,被稱為理論物理學家的例子包括爱因斯坦、海森堡、狄拉克、埃爾溫·薛丁格、尼爾斯·波耳、楊振寧等;而若偏重實驗,則稱為實驗物理學家,例如艾薩克·牛頓、法拉第、亨利·貝克勒、尼古拉·特斯拉、馬克斯·馮·勞厄、約瑟夫·湯姆森、歐內斯特·勞倫斯、吳健雄、威廉·肖克利、朱棣文等。.

新!!: 零點能量和物理学家 · 查看更多 »

盎魯效應

#重定向 安魯效應.

新!!: 零點能量和盎魯效應 · 查看更多 »

荷兰

荷蘭(Nederland,),直譯尼德蘭,是主權國家荷蘭王國()下的主要構成國,与美洲加勒比地区的阿鲁巴、库拉索和荷屬圣马丁等四個主體,共同组成這個主權國家。 荷兰的領土可分為歐洲區與加勒比區兩個部份。歐洲區領土位于欧洲西北部,濒临北海,与德国、比利时接壤,並與英國為鄰。加勒比海區,位於美洲加勒比海地區,包括博奈爾島、聖尤斯特歇斯島和薩巴島三個小島。荷蘭最大的三個城市分別為阿姆斯特丹、鹿特丹與海牙。阿姆斯特丹是宪法确定的正式首都,然而,政府、國王的王宫和大多数使馆都位于海牙。此外,国际法庭也设在海牙。鹿特丹港,位於鹿特丹,為全世界進出量第八的大型港口。 「尼德蘭」的字面意義,為低地國家,這個名稱來自於它國內平坦而低濕的地形。其國土中,只有約50%的土地高於海拔1公尺。其國土中,低於海平面的土地,絕大多數是人造的。從16世紀開始,荷蘭人,利用風車及堤防排乾積水,逐步由海中及湖中製造出圩田。現今荷蘭國土總面積中,有17%是人造的。荷蘭是一個人口非常稠密的國家,其人口密度為每平方公里406人,若不計入水域面積則是每平方公里497人。在全世界上,也只有孟加拉、台灣、韓國的總人口數與人口密度,同時高於尼德蘭。儘管如此,尼德蘭是世界第二大的糧食與農產品出口國,僅次於美國http://www.government.nl/news/2014/01/17/agricultural-exports-reach-record-levels.htmlhttp://www.hollandtrade.com/sector-information/agriculture-and-food/?bstnum.

新!!: 零點能量和荷兰 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

新!!: 零點能量和頻率 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 零點能量和马克斯·普朗克 · 查看更多 »

諧振子

古典力學中,一個諧振子(harmonic oscillator)乃一個系統,當其從平衡位置位移,會感受到一個恢復力F正比於位移x,並遵守虎克定律: 其中k是一個正值常數。 如果F是系統僅受的力,則系統稱作簡諧振子(簡單和諧振子)。而其進行簡諧運動——正中央為平衡點的正弦或餘弦的振動,且振幅與頻率都是常數(頻率跟振幅無關)。 若同時存在一摩擦力正比於速度,則會存在阻尼現象,稱這諧振子為阻尼振子。在這樣的情形,振動頻率小於無阻尼情形,且振幅隨著時間減小。 若同時存在跟時間相關的外力,諧振子則稱作是受驅振子。 力學上的例子包括了單擺(限於小角度位移之近似)、連接到彈簧的質量體,以及聲學系統。其他的相類系統包括了電學諧振子(electrical harmonic oscillator,參見RLC電路)。.

新!!: 零點能量和諧振子 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 零點能量和质量 · 查看更多 »

费曼图

费恩曼图(Feynman diagram)是美国物理学家理查德·费曼(即费恩曼)在处理量子场论时提出的一种形象化的方法,描述粒子之间的相互作用、直观地表示粒子散射、反应和转化等过程。使用费恩曼图可以方便地计算出一个反应过程的跃迁概率。 在费恩曼图中,粒子用線表示,费米子一般用实线,光子用波浪线,玻色子用虚线,胶子用圈线。一線與另一線的連接點稱為頂點。费恩曼图的橫軸一般为时间轴,向右为正,向左代表初态,向右代表末态。与时间轴方向相同的箭头代表正费米子,与时间轴方向相反的箭头表示反费米子。.

新!!: 零點能量和费曼图 · 查看更多 »

能级

能级(Energy level)理论是一种解释原子核外电子运动轨道的一种理论。它认为电子只能在特定的、分立的轨道上运动,各个轨道上的电子具有分立的能量,这些能量值即为能级。电子可以在不同的轨道间发生跃迁,电子吸收能量可以从低能级跃迁到高能级或者从高能级跃迁到低能级从而辐射出光子。氢原子的能级可以由它的光谱显示出来。.

新!!: 零點能量和能级 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 零點能量和能量 · 查看更多 »

蘭姆位移

物理學中,以威利斯·蘭姆(Willis Lamb)為名的蘭姆位移或譯藍姆位移(Lamb shift)是氫原子兩個能階(^2S_與^2P_)間的微小能量差。根據狄拉克的量子理論,n量子數及j量子數相同但l量子數不同的氫原子能態應該是簡併態,也就是不會有能量差值。.

新!!: 零點能量和蘭姆位移 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 零點能量和阿尔伯特·爱因斯坦 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 零點能量和量子力学 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 零點能量和量子场论 · 查看更多 »

量子諧振子

在量子力學裏,量子諧振子(quantum harmonic oscillator)是古典諧振子的延伸。其為量子力學中數個重要的模型系統中的一者,因為一任意勢在穩定平衡點附近可以用諧振子勢來近似。此外,其也是少數幾個存在簡單解析解的量子系統。量子諧振子可用來近似描述分子振動。.

新!!: 零點能量和量子諧振子 · 查看更多 »

量子電動力學

在粒子物理學中,量子電動力學(Quantum Electrodynamics,簡稱QED)是電動力學的相對論性量子場論。它在本質上描述了光與物質間的相互作用,而且它還是第一套同時完全符合量子力學及狹義相對論的理論。量子電動力學在數學上描述了所有由帶電荷粒子經交換光子產生的相互作用所引起的現象,同時亦代表了古典電動力學所對應的量子理論,為物質與光的相互作用提供了完整的科學論述。 用術語來說,量子電動力學就是電磁量子的微擾理論。它的其中一個創始人,理查德·費曼把它譽為「物理學的瑰寶」("the jewel of physics"),原因是它能為相關的物理量提供,例如電子的異常磁矩及氫原子能階的蘭姆位移。.

新!!: 零點能量和量子電動力學 · 查看更多 »

自发发射

自发辐射(Spontaneous emission),是在没有任何外界作用下,激发态原子或是分子的電子自发地从高能階向低能階跃迁,同时发射出一光子。 各原子的自发发射过程完全是随机的,所以自发辐射光是非相干的。 非相对论性的量子力学无法解释自发辐射,根据该理论,如果一个孤立原子处于定态,即使是激发态,它将一直处于该态,而不会跃迁到其他的态。但是量子场论指出一个电磁场系统即使处于真空态也有振动,孤立的原子是不存在的。当处于激发态的原子与场发生相互作用的时候将导致自发辐射。 Category:雷射科學 Category:电磁辐射.

新!!: 零點能量和自发发射 · 查看更多 »

電磁輻射

#重定向 电磁辐射.

新!!: 零點能量和電磁輻射 · 查看更多 »

虛粒子

虛粒子(virtual particle),意即虛構粒子、假想粒子,是在量子場論的數學計算中建立的一種解釋性概念,指代用來描述亞原子過程例如撞擊過程中粒子的數學項。但是,虛粒子並不直接出現在計算過程的那些可觀測的輸入輸出量中,那些輸入輸出量只代表實粒子。虛粒子項代表那些所謂離質量殼(off mass shell)的粒子。例如,它們沿時間反演、能量不守恒、以超光速移動,每條看起來都和物理基本原理相悖。虛粒子發生在那些大致可被實輸出量相消的組合項中,因此才産生了前述那些不實的衝突。虛粒子的虛「事件」通常看起來是一個緊接著另一個發生,例如在一次撞擊的時長中,所以他們顯得短命。如果在計算中略去那些被詮釋爲代表虛粒子的數學項,計算結果將變成近似值,有可能較大地偏離完整計算得到的正確而且精確的結果。 量子理論不同於經典理論。區別在於對於亞原子過程的內部機制的計算。經典物理不能處理這種計算。海森堡認爲,在亞原子過程例如碰撞中,到底「實際上」「真正」發生了什麽,是不可直接觀測的,也沒有可用以描述的單一而且物理明確的圖像。量子力學具有這樣的特質:即它可以避開關於內部機制的思考。它把自己限制在那些實際上可觀測可感知的方面。但是,虛粒子則是一種概念化的手段,通過給亞原子過程的內在機制提供假設性的詮釋性圖像,它試圖繞過海森堡的洞察。 虛粒子不必具有和對應實粒子相等的質量。這是因爲它短命而且瞬變,所以不確定性原理允許它不必守恒能量和動量。虛粒子存活得越久,它的特徵就越接近實粒子。 虛粒子出現在許多過程中,包括粒子擴散和卡西米爾效應。在量子場論中,即使是經典力 -- 例如電荷間的電磁吸引力和推斥力 -- 也可被認爲是源于荷間的虛光子交換。 不應將反粒子跟虛粒子或者虛反粒子相混淆。.

新!!: 零點能量和虛粒子 · 查看更多 »

暗能量

在物理宇宙學中,暗能量是一種充溢空間的、增加宇宙膨脹速度的難以察覺的能量形式。暗能量假說是當今對宇宙加速膨脹的觀測結果的解釋中最為流行的一種。在宇宙標準模型中,暗能量佔據宇宙68.3%的質能。 Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 46, Accessed Oct.

新!!: 零點能量和暗能量 · 查看更多 »

接地

在電機工程學裏,接地這術語,依著不同的應用領域,有幾種意思。接地是電路內部的一個電位參考點。從這參考點,可以測量其它電位。接地也可以被認為是電流的一個共同回歸路徑(稱為地回電路或地回路),或是與大地的一個直接有形的連接。 因為下述幾個理由,電機工程師會將電路連接到接地:.

新!!: 零點能量和接地 · 查看更多 »

核子

在化學和物理學裏,核子(nucleon)是組成原子核的粒子。每個原子核都擁有至少一個核子,每個原子又是由原子核與圍繞原子核的一個或多個電子所組成。核子共有兩種:中子和質子。任意原子同位素的質量數就是其核子的總數。因此有時人們也會稱這個數字為「核子數」。 在1960年代之前,核子被認為是基本粒子,不是由更小的部份組成的。今天我們知道核子是複合粒子,由三個夸克經強相互作用綑綁在一起組成。兩個或多個核子之間的交互作用稱為核力,最終這也是強交互作用引起的。(在發現夸克之前,「強交互作用」一詞只用於核子間的交互作用。) 核子研究屬於粒子物理學和核物理學的交叉領域。粒子物理學,特別是量子色動力學,提供了解釋夸克及強交互作用屬性的公式。這些公式用定量方法解釋夸克是如何結合成為中子和質子(以及所有其他的強子)。然而,當多個核子組合為一個原子核(核素)時,這些基礎方程式變得非常難直接求解,必須使用核物理學的方法。核物理學利用近似法和模型來研究多個核子之間的交互作用,例如用核殼層模型。這些模型能夠準確解釋核素的屬性,比如哪些核素會進行核衰變等。 質子和中子都是重子和費米子。質子和中子特別相似,除了中子不帶有電荷以外,中子的質量比質子僅僅高0.1%,它們的質量非常相近,因此它們可以視為同樣核子的兩種狀態,共同組成了一個同位旋二重態(),在抽象的同位旋空間做旋轉變換,就可以從中子變換為質子,或從質子變換為中子。這兩個幾乎相同的核子都感受到相等的強相互作用,這意味著強相互作用對於同位旋空間旋轉變換具有不變性。按照諾特定理,對於強相互作用,同位旋守恆。.

新!!: 零點能量和核子 · 查看更多 »

永动机

永动机是一类所謂不需外界输入能源、能量或在仅有一个热源的条件下便能够不断运动并且对外做功的机械。历史上人们曾经热衷于研制各种类型的永动机,其中包括达芬奇、焦耳这样的学术大師。在热力学体系建立后,學界認定永动机相悖於热力学基本原理的设想,而將之從正統學術界中排除。然而永动机的研究者始終未曾間斷。从一个侧面也可以认为,人类对永动机的热情以及制造永动机的种种实践,推动了热力学体系的建立和机械制造技术的进步。 1775年法国科学院通过决议,宣布永不接受永动机。现在美国专利及商标局严禁将专利证书授予永动机类申请。 2017年證實了時間晶體的存在,其原子運動無需任何外界能量來維持,符合「永動」的字面定義,但其能量在加入額外的能量前不可能被利用。如果時間晶體的熵不夠高,晶體可能會四散成粒子,因為後者才有更高的熵值,雖然這可能需要很久的時間。.

新!!: 零點能量和永动机 · 查看更多 »

波茲曼常數

波茲曼常數(Boltzmann constant)是有關於溫度及能量的一個物理常數,常用 k 或 k_B 表示,以纪念奧地利物理學家路德維希·波茲曼在統計力學领域做出的重大貢獻。數值及單位為:(SI制,2014 CODATA 值) 括號內為誤差值,原則上玻尔兹曼常數為導出的物理常數,其值由其他物理常數及絕對溫度單位的定義所決定。 氣體常數 R 是波茲曼常數 k 乘上阿伏伽德罗常數 N_A: k.

新!!: 零點能量和波茲曼常數 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 零點能量和温度 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 零點能量和时间 · 查看更多 »

旋磁比

在物理學中,旋磁比(gyromagnetic ratio,也稱為磁旋比,magnetogyric ratio,常用\gamma表示)定义为一個自旋不為零的粒子(此時下文中的磁矩與角動量指自旋磁矩和自旋角動量)或一個體系的磁矩與角動量之比(因而稱磁旋比),對於前一種情況,也等於粒子在外磁場作用下,磁矩作拉莫爾進動時的角頻率與外加磁場的磁感應強度之比(因而稱旋磁比)。在磁共振領域中廣泛用到此概念。.

新!!: 零點能量和旋磁比 · 查看更多 »

慣性

在物理學裡,慣性()是物體抵抗其運動狀態被改變的性質。物體的慣性可以用其質量來衡量,質量越大,慣性也越大。艾薩克·牛頓在鉅著《自然哲學的數學原理》裡定義慣性為: 更具體而言,牛頓第一定律表明,存在某些參考系,在其中,不受外力的物體都保持靜止或等速直線運動。也就是說,從某些参考系觀察,假若施加於物體的淨外力為零,則物體運動速度的大小與方向恒定。慣性定義為,牛頓第一定律中的物體具有保持原來運動狀態的性質。滿足牛頓第一定律的參考系,稱為慣性參考系。稍後會有關於慣性參考系的更詳細論述。 慣性原理是經典力學的基礎原理。很多學者認為慣性原理就是牛頓第一定律。遵守這原理,物體會持續地以現有速度移動,除非有外力迫使改變其速度。 在地球表面,慣性時常會被摩擦力、空氣阻力等等效應掩蔽,從而促使物體的移動速度變得越來越慢(通常最後會變成靜止狀態)。這現象誤導了許多古代學者,例如,亞里斯多德認為,在宇宙裡,所有物體都有其「自然位置」──處於完美狀態的位置,物體會固定不動於其自然位置,只有當外力施加時,物體才會移動。.

新!!: 零點能量和慣性 · 查看更多 »

普朗克尺度

在粒子物理與物理宇宙學等領域中,普朗克尺度(紀念馬克斯·普朗克)是指約1.22 × 1019GeV量級的能量尺度;依照質能等價原理,其相當於普朗克質量2.17645 × 10−8公斤。在這樣的尺度重力的量子效應變得重要,而目前描述次原子粒子的量子場論變得不適用,而重力的不可重整化成了問題。透過自然單位制的連結,普朗克尺度也可指長度或時間尺度。 在普朗克尺度,重力的強度變得與其他基本作用力相當,理論物理學家也認為所有的基本作用力在此統合,雖然詳細的機制仍不清楚。普朗克尺度因此是量子重力效應不可忽略的尺度。待發展的量子重力理論則變得必要,目前的研究方案包括弦論、M理論、迴圈量子重力、非交換幾何、因果集以及p-adic數學物理。.

新!!: 零點能量和普朗克尺度 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 零點能量和普朗克常数 · 查看更多 »

重定向到这里:

真空零点场零点能量零點能

传出传入
嘿!我们在Facebook上吧! »