徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

虛粒子

指数 虛粒子

虛粒子(virtual particle),意即虛構粒子、假想粒子,是在量子場論的數學計算中建立的一種解釋性概念,指代用來描述亞原子過程例如撞擊過程中粒子的數學項。但是,虛粒子並不直接出現在計算過程的那些可觀測的輸入輸出量中,那些輸入輸出量只代表實粒子。虛粒子項代表那些所謂離質量殼(off mass shell)的粒子。例如,它們沿時間反演、能量不守恒、以超光速移動,每條看起來都和物理基本原理相悖。虛粒子發生在那些大致可被實輸出量相消的組合項中,因此才産生了前述那些不實的衝突。虛粒子的虛「事件」通常看起來是一個緊接著另一個發生,例如在一次撞擊的時長中,所以他們顯得短命。如果在計算中略去那些被詮釋爲代表虛粒子的數學項,計算結果將變成近似值,有可能較大地偏離完整計算得到的正確而且精確的結果。 量子理論不同於經典理論。區別在於對於亞原子過程的內部機制的計算。經典物理不能處理這種計算。海森堡認爲,在亞原子過程例如碰撞中,到底「實際上」「真正」發生了什麽,是不可直接觀測的,也沒有可用以描述的單一而且物理明確的圖像。量子力學具有這樣的特質:即它可以避開關於內部機制的思考。它把自己限制在那些實際上可觀測可感知的方面。但是,虛粒子則是一種概念化的手段,通過給亞原子過程的內在機制提供假設性的詮釋性圖像,它試圖繞過海森堡的洞察。 虛粒子不必具有和對應實粒子相等的質量。這是因爲它短命而且瞬變,所以不確定性原理允許它不必守恒能量和動量。虛粒子存活得越久,它的特徵就越接近實粒子。 虛粒子出現在許多過程中,包括粒子擴散和卡西米爾效應。在量子場論中,即使是經典力 -- 例如電荷間的電磁吸引力和推斥力 -- 也可被認爲是源于荷間的虛光子交換。 不應將反粒子跟虛粒子或者虛反粒子相混淆。.

32 关系: 动量卡西米爾效應反粒子守恒定律不确定性原理干涉弱相互作用共轭共振光子光速玻色子磁場维尔纳·海森堡荷 (物理)质量费曼图超光速辐射能量量子量子力学量子场论量子穿隧效應量子涨落電場電荷虚数虛粒子核磁共振成像摄动理论普朗克常数

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 虛粒子和动量 · 查看更多 »

卡西米爾效應

-- 卡西米爾效應(Casimir effect)是由荷蘭物理學家亨德里克·卡西米爾(Hendrik Casimir)於1948年提出的一種現象,此效應隨後被偵測到,並以卡西米爾為名以紀念他。其根據量子場論的「真空不空」觀念——即使沒有物質存在的真空仍有能量漲落,而提出此效應:真空中兩片中性(不帶電)的金屬板會出現吸力;這在古典理論中是不會出現的現象。这种效应只有在两物体的距离非常之小时才可以被检测到。例如,在亚微米尺度上,该效应导致的吸引力成为中性导体之间主要作用力。事实上在10纳米间隙上(大概是一个原子尺度的100倍),卡西米爾效應能产生1个大气压的压力(101.3千帕)。一对中性原子之间的范德瓦耳斯力是一种类似的效应。.

新!!: 虛粒子和卡西米爾效應 · 查看更多 »

反粒子

反粒子是相对于正常粒子而言的,它们的质量、寿命、自旋都与正常粒子相同,但是所有的内部相加性量子数(比如电荷、重子数、奇异数等)都与正常粒子大小相同、符号相反。有一些粒子的所有内部相加性量子数都为0,这样的粒子叫做纯中性粒子,反粒子就是它本身,比如光子、π0介子等。并不是粒子物理学中的每种粒子都有这种意义上的反粒子,中微子就没有反粒子,反微中子的定义与此不同。 反粒子的概念首先是1928年由英国物理学家狄拉克在他的空穴理论中提出的。1932年在宇宙射线中发现了正电子,证实了狄拉克的预言。1956年美国物理学家歐文·張伯倫(Owen Chamberlain)在劳伦斯-伯克利国家实验室发现了反质子。进一步的研究发现,狄拉克的空穴理论对玻色子不适用,因而不能解释所有的粒子和反粒子。根据量子场论,粒子被看作是场的激发态,而反粒子就是这种激发态对应的复共轭激发态。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。.

新!!: 虛粒子和反粒子 · 查看更多 »

守恒定律

在物理學裏,假若孤立物理系統的某種可觀測性質遵守守恆定律(law of conservation),則隨著系統的演進,這種性質不會改變。 諾特定理是關於守恆定律的重要理論。諾特定理表明,每一種守恆定律,必定有其伴隨的物理對稱性。例如,伴隨著能量守恆的是物理系統對於時間的不變性。不論在空間的取向為何,物理系統的物理行為一樣,這性質導致角動量守恆。.

新!!: 虛粒子和守恒定律 · 查看更多 »

不确定性原理

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。.

新!!: 虛粒子和不确定性原理 · 查看更多 »

干涉

干涉可以指:.

新!!: 虛粒子和干涉 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

新!!: 虛粒子和弱相互作用 · 查看更多 »

共轭

共轭(conjugate)可以指:.

新!!: 虛粒子和共轭 · 查看更多 »

共振

共振點(聲學稱為共鳴)是指當一種物理系統在特定頻率底下,比其他頻率以更大的振幅做振動的情形;此些特定頻率稱之為共振頻率在共振頻率下,很小的週期驅動力便可產生巨大的振動,因為系統儲存有振動的能量當阻尼。有很微小的機會,共振頻率大約與系統自然頻率或稱固有頻率相等,後者是自由振盪時的頻率。.

新!!: 虛粒子和共振 · 查看更多 »

光子

| mean_lifetime.

新!!: 虛粒子和光子 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 虛粒子和光速 · 查看更多 »

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

新!!: 虛粒子和玻色子 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 虛粒子和磁場 · 查看更多 »

维尔纳·海森堡

维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.

新!!: 虛粒子和维尔纳·海森堡 · 查看更多 »

荷 (物理)

物理學中,荷可指不同的量值,例如電磁力學中的電荷,或是量子色動力學中的色荷。荷與恆守的量子量值有關。.

新!!: 虛粒子和荷 (物理) · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 虛粒子和质量 · 查看更多 »

费曼图

费恩曼图(Feynman diagram)是美国物理学家理查德·费曼(即费恩曼)在处理量子场论时提出的一种形象化的方法,描述粒子之间的相互作用、直观地表示粒子散射、反应和转化等过程。使用费恩曼图可以方便地计算出一个反应过程的跃迁概率。 在费恩曼图中,粒子用線表示,费米子一般用实线,光子用波浪线,玻色子用虚线,胶子用圈线。一線與另一線的連接點稱為頂點。费恩曼图的橫軸一般为时间轴,向右为正,向左代表初态,向右代表末态。与时间轴方向相同的箭头代表正费米子,与时间轴方向相反的箭头表示反费米子。.

新!!: 虛粒子和费曼图 · 查看更多 »

超光速

超光速(Faster-Than-Light, FTL或稱Superluminal)是一種速度比光速還快的概念,源自於相對論中對於定域物體不可能超過真空中光速的推論限制,光速成為許多場合下速率的上限值。在此之前的牛頓力學並未對超光速的速度作出限制。而在相对论中,运动速度和物体的其它性质,如质量甚至它所在参考系的时间流易等,密切相关,速度低于(真空中)光速的物体如果要加速达到光速,其质量会增长到无穷大因而需要无穷大的能量,而且它所感受到的时间流甚至会停止(如果超过光速则可能会出现“时间倒流”),所以理论上来说达到或超过光速是不可能的(至于光子,那是因为它在真空中永远处于光速c,而不是从低于光速增加到光速)。但也因此使得物理学家(以及普通大众)对于一些疑似超光速的物理现象特别感兴趣。 相對論出現後,超光速的意义出現在兩個領域,一個是物理上的(包括理論物理和實驗物理)以及天文學觀測方面,另一個是科幻方面,將相關條目條列如下:.

新!!: 虛粒子和超光速 · 查看更多 »

辐射

物理學上的輻射指的是能量以波或是次原子粒子移動的型態,在真空或介質中傳送。包含.

新!!: 虛粒子和辐射 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 虛粒子和能量 · 查看更多 »

量子

量子一詞來自拉丁语quantum,意為“有多少”,代表“相當數量的某物质”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學、量子光學等更成為不同的專業研究領域。 其基本概念为所有的有形性質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。 在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為瞭解和描述自然的的基本理論。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。.

新!!: 虛粒子和量子 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 虛粒子和量子力学 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

新!!: 虛粒子和量子场论 · 查看更多 »

量子穿隧效應

在量子力學裏,量子穿隧效應(Quantum tunnelling effect)指的是,像电子等微观粒子能夠穿入或穿越位勢壘的量子行為,儘管位勢壘的高度大於粒子的總能量。在經典力學裏,這是不可能發生的,但使用量子力學理論卻可以給出合理解釋。 量子穿隧效應是太陽核聚變所倚賴的機制。量子穿隧效應限制了太陽燃燒的速率,是太陽聚變循環的瓶頸,因此維持太陽的長久壽命。許多現代器件的運作都倚賴這效應,例如,隧道二極管、場致發射、約瑟夫森結、等等。扫描隧道显微镜、原子鐘也應用到量子穿隧效應。量子穿隧理論也被應用在半導體物理學、超導體物理學等其它領域。 至2017年為止,由於對於量子穿隧效應在半導體、超導體等領域的研究或應用,已有5位物理學者獲得諾貝爾物理學獎。.

新!!: 虛粒子和量子穿隧效應 · 查看更多 »

量子涨落

在量子力學中,量子涨落(quantum fluctuation。或量子真空涨落,真空涨落)是在空间任意位置對於能量的暂时变化。 從维尔纳·海森堡的不确定性原理可以推導出這結論。 根據這原理的一種表述,能量的不確定性 \Delta E 與能量改變所需的時間 \Delta t ,兩者之間的關係式為 其中 \hbar 是約化普朗克常数。 这意味著能量守恒定律好像被违反了,但是仅持续很短的时间。因此,在空間生成了由粒子和反粒子组成的虚粒子对。粒子对借取能量而生成,又在短时间内湮灭归还能量。这些产生的虚粒子的物理效应是可以被测量的,例如,電子的有效電荷與裸電荷不同。從量子电动力学的兰姆位移与卡西米尔效应,可以觀測到這效應。 量子涨落对于宇宙大尺度結構的起源非常重要,可以解釋宇宙为什么會出現超星系團、纖維狀結構這一類結構的问题:根据宇宙暴胀理论,宇宙初期是均匀的,均匀宇宙存在的微小量子涨落在暴胀之后被放大到宇宙尺度,成为最早的星-系-结构的种子。.

新!!: 虛粒子和量子涨落 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 虛粒子和電場 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 虛粒子和電荷 · 查看更多 »

虚数

虛數是一种複數,可以写作实数与虚数单位 i 的乘积在電子學及相關領域內,i 通常表達電流,故改為以 j 表示虛數單位。,其中 i 由 i^2.

新!!: 虛粒子和虚数 · 查看更多 »

虛粒子

虛粒子(virtual particle),意即虛構粒子、假想粒子,是在量子場論的數學計算中建立的一種解釋性概念,指代用來描述亞原子過程例如撞擊過程中粒子的數學項。但是,虛粒子並不直接出現在計算過程的那些可觀測的輸入輸出量中,那些輸入輸出量只代表實粒子。虛粒子項代表那些所謂離質量殼(off mass shell)的粒子。例如,它們沿時間反演、能量不守恒、以超光速移動,每條看起來都和物理基本原理相悖。虛粒子發生在那些大致可被實輸出量相消的組合項中,因此才産生了前述那些不實的衝突。虛粒子的虛「事件」通常看起來是一個緊接著另一個發生,例如在一次撞擊的時長中,所以他們顯得短命。如果在計算中略去那些被詮釋爲代表虛粒子的數學項,計算結果將變成近似值,有可能較大地偏離完整計算得到的正確而且精確的結果。 量子理論不同於經典理論。區別在於對於亞原子過程的內部機制的計算。經典物理不能處理這種計算。海森堡認爲,在亞原子過程例如碰撞中,到底「實際上」「真正」發生了什麽,是不可直接觀測的,也沒有可用以描述的單一而且物理明確的圖像。量子力學具有這樣的特質:即它可以避開關於內部機制的思考。它把自己限制在那些實際上可觀測可感知的方面。但是,虛粒子則是一種概念化的手段,通過給亞原子過程的內在機制提供假設性的詮釋性圖像,它試圖繞過海森堡的洞察。 虛粒子不必具有和對應實粒子相等的質量。這是因爲它短命而且瞬變,所以不確定性原理允許它不必守恒能量和動量。虛粒子存活得越久,它的特徵就越接近實粒子。 虛粒子出現在許多過程中,包括粒子擴散和卡西米爾效應。在量子場論中,即使是經典力 -- 例如電荷間的電磁吸引力和推斥力 -- 也可被認爲是源于荷間的虛光子交換。 不應將反粒子跟虛粒子或者虛反粒子相混淆。.

新!!: 虛粒子和虛粒子 · 查看更多 »

核磁共振成像

核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又稱自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),臺湾又称磁振造影,香港又稱磁力共振成像,是利用核磁共振(nuclear magnetic resonance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 從核磁共振現象發現到MRI技術成熟這幾十年期間,有关核磁共振的研究领域曾在三个领域(物理學、化学、生理学或医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。.

新!!: 虛粒子和核磁共振成像 · 查看更多 »

摄动理论

摄动理论使用一些特別的数学方法來對於很多不具精确解的问题給出近似解,这些方法从相关的較簡單问题的精确解开始入手。摄动理论將原本問題分為具有精確解的較簡單部分與不具精確解的微扰部分。摄动理论适用的问题通常具有以下性質:通过加入一个微扰项於較簡單部分的數學表述,可以計算出整個問題的近似解。 摄动理论计算出来的解答通常会表达为一个微小参数的冪級數。摄动理论解答与精确解之间的差别,可以用这微小参数来做数量比较。冪級數的第一个项目是精确解的解答。后面的项目描述解答的修正。这修正是因为精确解与原本问题的「完全解」之间的误差而产生的。更正式地,完全解A\,\!的近似可以表達为一个級數: 在這例子裏,A_0\,\!是簡單又有「精確解」的問題的精確解,A_1,\, A_2, \,\!代表由某种系统程序反覆地找到的高阶项目修正。因为\epsilon\,\!的值很微小,这些高阶项目修正应该会越来越不重要。.

新!!: 虛粒子和摄动理论 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 虛粒子和普朗克常数 · 查看更多 »

重定向到这里:

真空漲落虚粒子虛光子

传出传入
嘿!我们在Facebook上吧! »