徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

闭形式和恰当形式

指数 闭形式和恰当形式

在数学,特别是向量分析与微分拓扑中,一个闭形式 α 是微分算子 d 的核,即 dα.

19 关系: 偏导数同倫向量分析外微分定义良好平凡 (數學)二阶导数的对称性代数拓扑微分微分形式微分拓扑德拉姆上同调保守向量场物理学核 (线性算子)数学拉回 (微分几何)0

偏导数

在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.

新!!: 闭形式和恰当形式和偏导数 · 查看更多 »

同倫

在數學中,同倫(Homotopy)的概念在拓撲上描述了兩個對象間的「連續變化」。.

新!!: 闭形式和恰当形式和同倫 · 查看更多 »

向量分析

向量分析(或向量微積分)是數學的分支,关注向量場的微分和积分,主要在3维欧几里得空间 \mathbb^3 中。「向量分析」有时用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。向量分析在微分几何与偏微分方程的研究中起着重要作用。它被广泛应用于物理和工程中,特别是在描述电磁场、引力場和流体流动的时候。 向量分析从四元數分析发展而来,由约西亚·吉布斯和奧利弗·黑維塞於19世纪末提出,大多数符号和术语由吉布斯和黑維塞在他们1901年的书《向量分析》中提出。向量演算的常规形式中使用外积,不能推广到更高维度,而另一种的方法,它利用可以推广的外积,下文将会讨论。.

新!!: 闭形式和恰当形式和向量分析 · 查看更多 »

外微分

数学上,微分拓扑的外微分算子,把一个函数的微分的概念推广到更高阶的微分形式的微分。它在流形上的积分理论中极为重要,并且是德拉姆和Alexander-Spanier上同调中所使用的微分算子。其现代形式是由嘉当发明的。.

新!!: 闭形式和恰当形式和外微分 · 查看更多 »

定义良好

在数学裡,术语定义良好(定义良好的 well-defined,名词 well-definition)用于确认用一组基本公理以数学或逻辑的方式定义的某个概念或对象(一个函数,性质,关系,等等)是完全无歧义的,满足它必需满足的那些性质。通常定义是无歧义地表述,明白地满足它们所需的性质。但有时候,使用任意选择的方式来陈述定义是经济的,这时我们便要验证定义与选择无关。另一种情形,所需的性质可能不都是显然的,这时要验证它们。这些问题通常来自函数的定义。 譬如,在群论中,术语“定义良好”经常用于处理陪集时,陪集空间上的函数经常选取一个代表来定义:这时非常重要的是验证无论选取陪集的哪个代表,就像算术运算一样(比如,2加3总是5)我们总得到同样的结果。 f(x_).

新!!: 闭形式和恰当形式和定义良好 · 查看更多 »

平凡 (數學)

数学中,术语平凡或平凡的经常用于结构非常简单的对象(比如群或拓扑空间),有時亦會用明顯或乏趣這兩個詞代替,但对非数学工作者来说,它们有时可能比其他更复杂的对象更难想象或理解。 例如:.

新!!: 闭形式和恰当形式和平凡 (數學) · 查看更多 »

二阶导数的对称性

数学中,二阶导数的对称性(也称为混合导数的相等)指取一个n元函数 的偏导数可以交换。如果关于x_的偏导数用一个下标i表示,则对称性断言二阶偏导数f_满足等式 从而它们组成一个n×n 对称矩阵。有时这也称为杨定理(Young's theorem)。.

新!!: 闭形式和恰当形式和二阶导数的对称性 · 查看更多 »

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

新!!: 闭形式和恰当形式和代数拓扑 · 查看更多 »

微分

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.

新!!: 闭形式和恰当形式和微分 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 闭形式和恰当形式和微分形式 · 查看更多 »

微分拓扑

微分拓撲是一個处理在微分流形上的可微函数的数学领域。很自然地,它是在研究微分方程理論的过程中被提出來的。微分幾何是用微積分來研究幾何的学问。这些领域非常接近,在物理学,特别在相对论方面有许多的应用。它们合在一起还建立了可从动力系统观点直接研究的、可微流形的几何理论。 * W category:微积分.

新!!: 闭形式和恰当形式和微分拓扑 · 查看更多 »

德拉姆上同调

数学上,德拉姆上同调(de Rham cohomology)是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。.

新!!: 闭形式和恰当形式和德拉姆上同调 · 查看更多 »

保守向量场

如果一个向量场是某个标量势的梯度,那么便称为保守向量场。有两个密切相关的概念:路径无关和无旋向量场。任何一个保守向量场的旋度都是零(因此是无旋的),也具有路径无关的性质。.

新!!: 闭形式和恰当形式和保守向量场 · 查看更多 »

像可以是指:.

新!!: 闭形式和恰当形式和像 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 闭形式和恰当形式和物理学 · 查看更多 »

核 (线性算子)

在线性代数与泛函分析中,一个线性算子 L 的核(kernel)是所有使 L(v).

新!!: 闭形式和恰当形式和核 (线性算子) · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 闭形式和恰当形式和数学 · 查看更多 »

拉回 (微分几何)

在微分几何中,拉回是将一个流形上某种结构转移到另一个流形上的一种方法。具体地说,假设 φ:M→ N 是从光滑流形 M 到 N 的光滑映射;那么伴随有一个从 N 上 1- 形式(余切丛的截面)到 M 上 1-形式的线性映射,这个映射称为由 φ 拉回,经常记作 φ*。更一般地,任何 N 上共变张量场——特别是任何微分形式——都可以由 φ 拉回到 M 上。 当映射 φ 是微分同胚,那么拉回与前推一起,可以将任何 N 上的张量场变换到 M,或者相反。特别地,如果 φ是 Rn 的开集与 Rn 之间的微分同胚,视为坐标变换(也许在流形 M 上不同的坐标卡上),那么拉回和前推描述了共变与反变张量用更传统方式(用基)表述的变换性质。 拉回概念背后的本质很简单,是一个函数和另外一个函数的前复合。但是将这种想法运用到许多不同的情形,可以构造许多复杂的拉回。本文从简单的操作开始,然后利用它们构造更复杂的。粗略地讲,拉回手法(利用前复合)将微分几何中多种不同的结构变成反变函子。.

新!!: 闭形式和恰当形式和拉回 (微分几何) · 查看更多 »

0

0(〇/零)是-1与1之间的整数。0既不是正数也不是负数。0是偶数。在数论中,0不属于自然数;在集合论和计算机科学中,0属于自然数。0在整数、实数和其他的代数結構中都有著單位元這個很重要的性質。.

新!!: 闭形式和恰当形式和0 · 查看更多 »

重定向到这里:

庞加莱引理恰当形式恰当微分形式闭形式闭形式与恰当形式闭微分形式闭微分形式和恰当微分形式

传出传入
嘿!我们在Facebook上吧! »