徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

鋇星

指数 鋇星

鋇星是G至K型的巨星,它們的光譜 出現455.4nm的波長,顯示有過量的電離鋇元素,BaII。鋇星也顯示出碳的譜線特徵,這是CH、CN和C2等分子的譜線。最出辨識出和定義鋇星的是William Bidelman和菲利普·肯納 。 徑向速度的觀察認為所有的鋇星都是双星。使用國際紫外線探測衛星 (IUE)在紫外線波段觀察到一些鋇星系統內有白矮星。 鋇星被認為是双星系統內質量轉移造成的結果,質量轉移發生在主序帶內目前觀察到的巨星上。他的伴星,施主星,是在漸近巨星分支 (AGB) 的碳星,並且在他的內部導致碳和S-過程元素。在施主星失去大量質量的AGB晚期,這些核融合的產品經對流混合送到表面,有些物質"污染"了施主星的表面。我們不能確定是在質量轉移之後多久的時間才觀察到這些系統,施主星已經長期演化变成了白矮星,而"被污染"的接收星演變成紅巨星 。 在它的演變期間,鋇星隨著時間增長和變冷,抵達光譜類型G或K型的極限。當這種情況發生時,通常原來的恆星光譜是M型,但S-過程使它的殘餘變更了組成,造成他的光譜被修改成另一種特殊的光譜類型。恆星表面的溫度在M型的範疇內,但S-過程產生的元素鋯 (Zr)會顯示出氧化鋯(ZrO)的分子譜線。當這種情況發生時,恆星將成為"外因"S恆星。 在歷史上,鋇星曾是一個難題,因為在標準恆星演化理論的G和K型巨星,距離綜合碳和S-過程元素並混合至表面仍很遙遠。聯星的發現很自然解決了這個難題,從能夠產生這些物質的伴星導入原料,讓它們產生了特異的光譜。質量傳遞的過程在天文學的時間尺度上是非常短暫的;質量傳遞的假設也預測主序星中也會有光譜特異的鋇星。至少已經知道有一顆這樣的恆星:HR 107。 鋇星的樣本包括:摩羯座 ζ(燕)、HR774和HR4474。 CH星是第二星族星,有著相似的演變狀態、特殊的光譜、軌道狀態,被相信是更老的、缺乏金屬的,與鋇星類似。.

21 关系: 對流巨星主序星传质徑向速度國際紫外線探測衛星CH星碳星紫外线紅巨星燕 (恆星)白矮星聯星S-過程恒星光谱恆星演化波长漸近巨星分支

對流

對流是指流體內部的分子運動,是熱傳與質傳的主要模式之一。熱對流(亦稱爲對流傳熱)是三種主要熱傳方式中的其中一種(另外兩種分別是熱傳導與熱輻射).

新!!: 鋇星和對流 · 查看更多 »

巨星

巨星在本質上是一顆半徑和亮度都比主序星大,但卻有相同的表面溫度的恆星Giant star, entry in Astronomy Encyclopedia, ed.

新!!: 鋇星和巨星 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

新!!: 鋇星和主序星 · 查看更多 »

传质

传质(Mass transfer)是体系中由于物质浓度不均匀而发生的质量转移过程。 体系中由于熵自动向最大值移动,即趋向均匀,如果各部分温度不均匀,会趋向一个平均温度,如果浓度不均匀,也会趋向一个平均浓度,但浓度的传递必须发生在流体中间,可以是两种流体之间,也可以是一种流体和固体之间传质(如萃取),。 在化学工业中,一般应用的是气-液系统;液-液系统和固-液系统之间的传质过程。.

新!!: 鋇星和传质 · 查看更多 »

徑向速度

视向速度是物體朝向視線方向的速度。一個物體的光線在徑向速度上會受多普勒效应的支配,退行的物體光波長將增加(紅移),而接近的物體光波長將減少(藍移)。 恆星的徑向速度,能夠經由高解析的光譜精確的測量,並且和在實驗室內測出的已知譜線波長做比較。在習慣上,正的徑向速度表示物體在退行,如果是負值,物體則是在接近。 在許多聯星中,軌道運動通常都會造成每秒數公里的徑向速度改變量。這些恆星譜線的變化肇因於都卜勒效應,因此她們被稱為光譜聯星。研究徑向速度可以估計恆星的質量和一些軌道要素,像是離心率、半長軸。同樣的方法也被用在發現環繞恆星的行星上,在這種方法下測量的運動可以確定行星的軌道週期,而位移量的大小可以用來計算行星的質量。.

新!!: 鋇星和徑向速度 · 查看更多 »

國際紫外線探測衛星

國際紫外線探測衛星(International Ultraviolet Explorer,縮寫:IUE),或翻譯為國際紫外線探測器,是以紫外線為主要觀測波段的太空望遠鏡。該太空望遠鏡是美國國家航空暨太空總署、歐洲太空總署和英國自然科學及工程研究委員會(SERC)的合作計畫。該計畫最早在1964年由一群英國科學家提出,並於1978年1月26日以 NASA 的三角洲系列運載火箭發射。該任務的預定執行時間為3年,但最後它延續了幾乎滿18年,直到1996年儀器被關機為止。被關機的原因是因為預算因素,而關機時它的望遠鏡運作仍跟最初狀態相去不遠。 IUE 是第一個天文學家在美國和歐洲的地面站進行實時觀測的太空望遠鏡。天文學家使用 IUE 對自太陽系至类星体等不同距離的天體觀測了超過10萬4千次。來自該衛星的重要科學成果包含首次對恆星風的大尺度研究、星際塵埃吸收光量的準確方式,以及對超新星SN 1987A的觀測顯示它和先前所知的恆星演化模型不同。當該任務結束時被認為是比先前的其他天文衛星任務更加成功。.

新!!: 鋇星和國際紫外線探測衛星 · 查看更多 »

CH星

CH星是一種特殊的碳星,在光譜上會出現極強的CH吸收帶。它們屬於第二星族,意思是這些恆星缺少金屬,在年齡上也都屬於中年以上,並且是低光度的傳統C-N碳星。許多CH星都是聯星,並且可以合理的相信所有的CH星都是聯星。像鋇星一樣,它們大概也是傳統碳星質量轉移的結果,現在有一顆白矮星,在現行分類上也屬於CH星。 Category:恆星類型.

新!!: 鋇星和CH星 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 鋇星和碳 · 查看更多 »

碳星

碳星是大氣層內的碳比氧多,類似紅巨星 (偶爾是紅矮星) 的晚期星。這兩種元素在恆星大氣的上層結合,形成一氧化碳,消耗掉大氣中所有的氧,只留下自由的碳原子和其他的碳結合,使得恆星充滿了像"煤灰"的大氣層, 而觀測人員看見的則是醒目的紅色。 在光譜上,這類恆星的特徵非常明顯,因此早在1860年就被安吉洛·西奇在早期的天文分光學上標示出來。在一般的恆星 (像太陽的恆星) ,大氣中的氧含量都比碳多。.

新!!: 鋇星和碳星 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

新!!: 鋇星和紫外线 · 查看更多 »

紅巨星

红巨星是巨星的一种,是恆星的一種衰變狀態,根据恒星质量的不同,存在期只有数百万年不等。质量通常约为0.5至8个太阳质量,质量更大的称为红超巨星,質量再大的為紅特超巨星。.

新!!: 鋇星和紅巨星 · 查看更多 »

燕 (恆星)

摩羯座ζ,又名BD-2215388,HD 204075、SAO 190341、HR 8204,是摩羯座的一颗恒星,视星等为3.74,位于銀經26.98,銀緯-43.59,其B1900.0坐标为赤經,赤緯。.

新!!: 鋇星和燕 (恆星) · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

新!!: 鋇星和白矮星 · 查看更多 »

聯星

聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.

新!!: 鋇星和聯星 · 查看更多 »

钡(Barium)是化学元素周期表中的元素,它的原子序数是56,化学符号是Ba。它是周期表中2A族的第五个元素,是一种柔软的有银白色金属光泽的碱土金属。由于它的化学性质十分活泼,从来没有在自然界中发现钡单质。 钡在自然界中最常见的矿物是重晶石(硫酸钡,BaSO4)和毒重石(碳酸钡,BaCO3),二者皆不容于水。钡的名称源于希腊文单词βαρύς(barys),意为“重的”。它在1774年被确认为一个新元素,但直到1808年电解法发明不久后才被归纳为金属元素。 钡在工业上只有少量应用。过去曾用它作为真空管中的吸气剂。它是YBCO(一种高温超导体)和电瓷的成分之一,也可以被添加进钢中来减少金属构成中碳颗粒的数量。钡的化合物用于制造烟火中的绿色。硫酸钡作为一种不溶的重添加剂被加进钻井液中,而在医学上则作为一种X光造影剂。可溶性钡盐因为会电离出钡离子所以有毒,因此也被用做老鼠药。.

新!!: 鋇星和钡 · 查看更多 »

锆(Zirconium)是化学元素,化学符号是Zr,原子序数是40,是银白色的过渡金属。.

新!!: 鋇星和锆 · 查看更多 »

S-過程

S-過程,或稱為慢中子捕獲過程,是發生在相對來說中子密度較低和溫度中等條件下的恆星進行核合成過程。在這樣的條件下,原子的核心進行中子捕獲的速率相較之下就低於β負衰變。穩定的同位素捕獲中子;但是放射性同位素在另一次中子捕獲前就先衰變成為穩定的子核,這樣經由β穩定的過程,使同位素沿著同位素列表的槽線移動。S-過程大約創造了另一半比鐵重的元素,因此在星系化學演化中扮演著很重要的角色。S-過程與更快速的r-過程中子捕獲不同的是它的低速率。.

新!!: 鋇星和S-過程 · 查看更多 »

恒星光谱

在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.

新!!: 鋇星和恒星光谱 · 查看更多 »

恆星演化

恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.

新!!: 鋇星和恆星演化 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

新!!: 鋇星和波长 · 查看更多 »

漸近巨星分支

AGB恆星在天文物理上是非常重要的,因為它們能產生大量的塵粒,並且也是成為行星狀星雲的前兆。 漸近巨星分支是赫羅圖上低質量至中質量恆星在演化時聚集的區域。在恆星演化周期中,這是所有中低質量恆星(0.6-10太陽質量)末期階段的生活。 在觀測上,一顆漸近巨星分支(AGB)恆星看起來像是一顆紅巨星。它的內部構造特點是在中央有一個不活躍的碳和氧核心,外面是正在將氦融合成碳(氦燃燒)的氦層,再外面則是將氫融合成氦(氫燃燒)的殼層,還有大量與一般正常恆星類似的物質組成的外殼。.

新!!: 鋇星和漸近巨星分支 · 查看更多 »

重定向到这里:

钡星

传出传入
嘿!我们在Facebook上吧! »