目录
代数
代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.
查看 重写逻辑和代数
系統
系統(system;system;système;sistema)泛指由一群有關聯的個體組成,根據某種規則運作,能完成個別元件不能單獨完成的工作的群體。 系統分為自然系統與人為系統兩大類。.
查看 重写逻辑和系統
线性逻辑
在数理逻辑中,线性逻辑是拒绝“弱化”和“收缩”的结构规则的一种亚结构逻辑。对此解释是“假设是资源”:在证明中所有假设必须被消费“精确一次”。这区别于平常的逻辑比如经典逻辑或直觉逻辑,那里统治判断是“真理”,它可以按需要被自由的使用多次。例如,从命题A和A ⇒ B能按如下步骤得出结果A ∧ B.
查看 重写逻辑和线性逻辑
编程语言
编程语言(programming language),是用来定义计算机程序的形式語言。它是一种被标准化的交流技巧,用来向计算机发出指令。一种计算机语言让程序员能够准确地定义计算机所需要使用的数据,并精确地定义在不同情况下所应当采取的行动。 最早的编程语言是在電腦發明之前產生的,當時是用來控制及自動演奏鋼琴的動作。在電腦領域已發明了上千不同的编程語言,而且每年仍有新的编程語言誕生。很多编程語言需要用指令方式說明計算的程序,而有些编程語言則屬於宣告式編程,說明需要的結果,而不說明如何計算。 编程语言的描述一般可以分為及語義。語法是說明編程語言中,哪些符號或文字的組合方式是正確的,語義則是對於編程的解釋。有些語言是用規格文件定義,例如C語言的規格文件也是ISO標準中一部份,2011年後的版本為ISO/IEC 9899:2011,而其他55語言(像Perl)有一份主要的文件,視為是。.
查看 重写逻辑和编程语言
用户
--户,又称使--用者,是指使用电脑或网络服务的人,通常拥有一个用户账号,并以用户名识别。用户有时也泛指没有充分技术经验的人。.
查看 重写逻辑和用户
计算机逻辑
计算机逻辑描述应用于计算机科学和人工智能的逻辑。它包括:.
查看 重写逻辑和计算机逻辑
语法
语言学中语法(Grammar)是指任意自然语言中控制子句、词组以及单词等结构的规则,这一概念也被用来指对于这些规则进行研究的学科,例如词法学、语法学或音韵学等,并和其他学科如语音学、语义学或语用学互相补充。在很多文献中,语言学家通常不用“语法”来指正寫法。.
查看 重写逻辑和语法
霍尔逻辑
霍爾邏輯(Hoare Logic),又稱弗洛伊德-霍爾邏輯(Floyd–Hoare logic),是英国计算机科学家東尼·霍爾开发的形式系统,这个系统的用途是为了使用严格的数理逻辑推理來替计算机程序的正确性提供一组逻辑规则。 這個想法起源於罗伯特·弗洛伊德於較早的研究,他为流程图提供了类似的系统。東尼·霍爾於1969年首次發表,随后为其他研究者所精制。.
查看 重写逻辑和霍尔逻辑
逻辑
邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.
查看 重写逻辑和逻辑
另见
计算机逻辑
- 不可判定问题
- 先决条件
- 公理语义学
- 功能验证
- 卡诺图
- 可计算性逻辑
- 合一
- 布尔可满足性问题
- 形式语义学
- 形式验证
- 後繼函數
- 指称语义
- 操作语义学
- 斷言 (程式)
- 时序逻辑电路
- 有类型λ演算
- 柯里-霍华德同构
- 模糊逻辑
- 皮亚诺公理
- 直觉主义逻辑
- 直觉类型论
- 知识交换格式
- 競爭危害
- 组合子逻辑
- 组合逻辑电路
- 结构归纳法
- 自动推理
- 自足算子
- 计算机逻辑
- 逻辑框架
- 重写逻辑
- 電腦科學邏輯方法期刊
- 霍恩子句