目录
19 关系: 半正多面體,十一邊形,均勻多面體,对称关系,展開圖,康威多面體變換,五角化二十四面體,几何学,等腰三角形,約翰·何頓·康威,鷂形,部分截半截角八面體,阿基米德立體,正十一邊形,正多邊形,正方形,截角十二面體,截角八面體,擬詹森多面體。
半正多面體
半正多面體是泛指所有由超過一種正多邊形所組成的多面體,並且要有對稱群,根據托羅爾德戈塞特的1900定義半正多面體有下面幾種:.
十一邊形
#重定向 十一边形.
均勻多面體
在幾何學中,均勻多面體是一種具有正多邊形面且頂點可遞的多面體,即等角傳遞它的頂點,可以等距映射任一頂點到任何其他頂點)由此可見,所有的頂點是全等的,所以該多面體具有具有高度反射和旋轉對稱。 均勻多面體可能是正多面體(如果還面可遞,邊也可遞),擬正多面體(若邊可遞,則面不可遞)或半正多面體(既不邊可遞面也不可遞)。由於面和頂點不一定要是凸的,所以很多均勻多面體的也是星狀多面體。 不包括無限集合,有75個均勻多面體(或76,如果允許邊緣重合)。.
对称关系
数学上,若對所有的 a 和 b 屬於 X,下述語句保持有效,則集合 X 上的二元关系 R 是对称的:「若 a 关系到 b,则 b 关系到 a。」 数学上表示为: 例如:“和……结婚”是对称关系;“小于”不是对称关系。 注意,对称关系不是反对称关系(aRb 且 bRa 得到 b.
展開圖
在幾何學中,展開圖是一種幾何圖形,是將一幾何圖形的面沿著邊接合,並劃在同一個比該幾何圖形少一個維度的空間上。換句話說,就是一個立體圖形或多面體的表面在平面上攤平後得到的圖形,我們稱它為多面體的展開圖。另外,展開圖還有提它維度的形式,比如說,我們可以把一個多邊形的邊劃成一條直線,並標記頂點,該直線的長度就是多邊形的周長,就是多邊形的展開,這是展開圖在二維空間的類比。同樣地,在四維空間中,將一多胞體,也能用同樣的概念製成展開圖,展開於三維空間中。在五維空間中的多胞體也可也展開於四維空間中。多面體的展開圖有助於多面體和立體幾何的研究的圖形,因為它們允許用任何材料,如薄紙板,經摺疊製作的多面體模型,同樣的 一個幾何圖形並不一定只有一種展開圖,根據其中的選擇不同邊緣分離,可以得到不同的展開圖,但接合後得到同一個幾何圖形.
康威多面體變換
#重定向 康威多面體表示法 Category:多面体 Category:康威多面体.
五角化二十四面體
在幾何學中,五角化二十四面體是卡塔蘭立體的一種,它的對偶多面體是扭棱立方體。 五角化二十四面體有兩種不同的形式,它們互為鏡像(或“對映體”),是為手性鏡像。 五角化二十四面體兩種手性鏡像的面、頂點、邊數皆相同,共有24個面、60個邊、38個頂點。.
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
等腰三角形
在幾何學中,等腰三角形(isosceles triangle)是指至少有兩邊等長或相等的三角形,因此會造成有2個角相等。相等的兩個邊稱等腰三角形的腰,另一邊稱為底邊,相等的兩個角稱為等腰三角形的底角,其餘的角叫做頂角《中學數學實用辭典》ISBN 957-603-093-5 九章出版。 等腰三角形的重心、中心和垂心都位於頂點向底邊的垂,可以把等腰三角形分成兩個全等的直角三角形。《圖解數學辭典》天下遠見出版 P.37 三角形 ISBN 986-417-614-5 等邊三角形是底邊和腰等長的等腰三角形,是等腰三角形的一個特殊形式。若等腰三角形的頂角為直角,稱為等腰直角三角形。.
約翰·何頓·康威
約翰·何頓·康威(John Horton Conway,),生於英國利物浦,數學家,活躍於有限群的研究、趣味數學、紐結理論、數論、組合博弈論和編碼學等範疇。 康威年少時就對數學很有強烈的興趣:四歲時,其母發現他背誦二的次方;十一歲時,升讀中學的面試,被問及他成長後想幹甚麼,他回答想在劍橋當數學家。後來康威果然於劍橋大學修讀數學,現時為普林斯頓大學的教授。.
鷂形
鷂形,在台灣稱作鳶形,在中国大陆称为筝形,是一個四邊形,特點為:.
部分截半截角八面體
在幾何學中,部分截半截角八面體是一種凸多面體,是一種由截角八面體透過不完全的而產生的一種多面體,類似於完全截半截角正方形鑲嵌,將截出來的三角形截為正三角形,而完全截半截角八面體截出來的是等腰三角形。其與完全截半截角八面體面數相同,皆為38個面,但六邊形全部被九邊形取代。 部分截半截角八面體一共有38個面、84條邊以及48個頂點,38中包含24個正三角形、6個正方形及8個九邊形,但九邊形不是正九邊形,甚至不等角,也不等邊。但它有30個正多邊形面,已佔大部分,其在正多邊形與非正多邊形之間的物理構造上僅有非常小的差異,因此屬於擬詹森多面體。.
阿基米德立體
阿基米德立體是一種高度對稱的半正多面體,且使用兩種或以上的正多邊形為面的凸多面體,並且都是可以從正多面體經過截角、截半、截邊等操作構造。阿基米德立體的每個頂點的情況相同,共有13種。阿基米德曾研究半正多面體(雖然其研究紀錄已佚),故有人將半正多面體喚作阿基米德立體。因為面是由正多邊形組成的,每個相鄰的正多邊形的邊長相等,故阿基米德立體的邊均有相同長度。阿基米德立體的对偶多面体是卡塔蘭立體。 半正多面體一詞不只是指13種阿基米德立體,而是指所有具有對稱群且由2種或2種以上正多邊形所組成的多面體。.
正十一邊形
#重定向 十一边形.
正多邊形
#重定向 正多边形.
正方形
在平面几何学中,正方形是四邊相等且四個角是直角的四邊形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为。 正方形是二维的超方形,也是二维的正轴形。.
截角十二面體
#重定向 截角十二面体.
截角八面體
在幾何學中,截角八面體是一種具有十四個面的半正多面體,屬於阿基米德立體也是個平行多面體和。由6個正方形和8個正六邊形組成,共有14個面、36個邊以及24個頂點。因為每個面皆具點對稱性質,因此截角八面體也是一種環帶多面體。同時,因為它具有正方形和六邊形面,因此也是一種戈德堡多面體,其戈德堡符號為GIV(1,1)。另外,由於截角八面體也是一種Cayley graph of S4.
擬詹森多面體
在幾何學中,擬詹森多面體是嚴格凸多面體,其面幾乎都是正多邊形,但其中有部分或全部的面不是正多邊形但很接近正多邊形。這種多面體也包含詹森多面體,即所有的面都是正多邊形,而擬詹森多面體經常會有在物理構造沒有注意到的差異在正多邊形與非正多邊形之間。近似的精確值取決於這樣一個多面體的面逼近正多邊形的程度。.