目录
健壮性 (计算机科学)
计算机科学中,健壮性(Robustness)是指一个计算机系统在执行过程中处理错误,以及算法在遭遇输入、运算等异常时继续正常运行的能力。 诸如模糊测试之类的形式化方法中,必须通过制造错误的或不可预期的输入来验证程序的健壮性。很多商业产品都可用来测试软件系统的健壮性。健壮性也是失效评定分析中的一个方面。.
人工神经网络
人工神经网络(Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或類神經網絡,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中樞神經系統,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗的講就是具備學習功能。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:.
查看 软计算和人工神经网络
人工智能
人工智能(Artificial Intelligence, AI)亦稱機器智能,是指由人製造出來的機器所表現出來的智能。通常人工智能是指通過普通電腦程式的手段實現的人類智能技術。該詞也指出研究這樣的智能系統是否能夠實現,以及如何實現科學領域。同時如此,人類的數量開始收斂及功能逐漸被其取代。 一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统。约翰·麦卡锡于1955年的定义是「制造智能机器的科学与工程。」 人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及範圍極廣。人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。 AI的核心问题包括建構能夠跟人類似甚至超越的推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。強人工智能目前仍然是该领域的长远目标。目前強人工智慧已經有初步成果,甚至在一些影像辨識、語言分析、棋類遊戲等等單方面的能力達到了超越人類的水平,而且人工智慧的通用性代表著,能解決上述的問題的是一樣的AI程式,無須重新開發算法就可以直接使用現有的AI完成任務,與人類的處理能力相同,但達到具備思考能力的統合強人工智慧還需要時間研究,比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基於仿生學、認知心理學,以及基于概率论和经济学的演算法等等也在逐步探索當中。.
查看 软计算和人工智能
神經元
经元(neuron),又名神经原或神经细胞(英語:nerve cell),是神经系统的结构与功能单位之一。神经元能感知环境的变化,再将信息传递给其他的神经元,并指令集体做出反应。神經元佔了神經系統約10%,其他大部分由膠狀細胞所構成。基本構造由樹突、軸突、髓鞘、細胞核組成。傳遞形成電流,在其尾端為受體,藉由化學物質(化学递质)傳導(多巴胺、乙醯膽鹼),在適當的量傳遞後在兩個突觸間形成電流傳導。 人脑中,神经细胞约有860亿个。其中约有700亿个为小脑颗粒细胞(cerebellar granule cell)。.
查看 软计算和神經元
遗传算法
遗传算法(genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。 遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)可抽象表示为染色體,使种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中评价整个种群的适应度,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群。.
查看 软计算和遗传算法
计算
計算(Calculation)是一種將「單一或多個的輸入值」轉換為「單一或多個的結果」的一種思考過程。 計算的定義有許多種使用方式,有相當精確的定義,例如使用各種算法進行的「算术」,也有較為抽象的定義,例如在一場競爭中「策略的計算」或是「計算」兩人之間關係的成功機率。 將7乘以8(7x8)就是一種簡單的算術。 利用布莱克-斯科尔斯模型(Black-Scholes Model)來算出財務評估中的公平價格(fair price)就是一種複雜的算術。 從投票意向計算評估出的選舉結果(民意調查)也包含了某種算術,但是提供的結果是「各種可能性的範圍」而不是單一的正確答案。.
查看 软计算和计算
模式识别
模式识别(Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别、语音识别系统。 计算机识别的显著特点是速度快、准确性高、效率高,在将来完全可以取代人工录入。 识别过程与人类的学习过程相似。以光學字元識別之“汉字识别”为例:首先将汉字图像进行处理,抽取主要表达特征并将特征与汉字的代码存在计算机中。就像老师教我们「这个字叫什么、如何写」记在大脑中。这一过程叫做“训练”。识别过程就是将输入的汉字图像经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。这一过程叫做“匹配”。.
查看 软计算和模式识别
模糊逻辑
模糊逻辑是处理部分真实概念的布林運算扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和語意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。 真实度经常混淆于概率。但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员歸屬关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节:Bob在有两个毗邻的屋子的房子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但Bob站在门口的时候怎么办呢?它可被认为是“部分的在厨房中”。量化这个部分陈述产生了一个模糊集合成员关系。比如,只有他的小脚趾在餐厅,我们可以说Bob是0.01“在厨房中”。只要Bob站在了门口,就没有事件(如抛硬币)能解决他完全的“在厨房中”或“不在厨房中”。模糊集合是基于集合的模糊定义而不是随机性。 模糊逻辑允许在包含0和1的它们之间集合成员关系值,同于黑和白之间的灰色,在它的语言形式中,有不精确的概念如"稍微"、"相当"和"非常"。特别是,它允许在集合中的部分成员关系。它有关于模糊集合和可能性理论。它是1965年卢菲特·泽德教授在加州大学伯克利分校介入的。 模糊逻辑尽管被广泛接受却是有争议的:它被某些控制工程师出于有效性和其他原因,和一些坚持概率论是不确定性的唯一严格描述的统计学家所拒绝。批評者認為它不是普通集合论的超集,因为成员函数是依据常规集合而定义的。.
查看 软计算和模糊逻辑
模拟退火
模擬退火是一種通用概率演算法,常用來在一定時間內尋找在一個很大搜尋空間中的近似最優解。模擬退火是S.
查看 软计算和模拟退火
最优化
最优化,是应用数学的一个分支,主要研究以下形式的问题:.
查看 软计算和最优化
数学模型
數學模型是使用數學概念和語言來对一個系統的描述。建立数学模型的过程叫做数学建模。數學模型不只用在自然科學(如物理、生物學、地球科學、大氣科學)和工程学科(如计算机科学,人工智能)上,也用在社會科學(如經濟學、心理學、社會學和政治科學)上;其中,物理學家、工程師、统计学家、運籌學分析家和經濟學家們最常使用數學模型。模型会帮助解释一个系统,研究不同组成部分的影响,以及对行为做出预测。 Eykhoff定義「數學模型」為「對一個現存(或被建構的)系統本質的表述,以能以有用的形式表示出此系統的知識來。」 數學模型可以有許多種的形式,不只限定在動態系統、概率模型、微分方程或賽局模型而已。不同的模型可能有相同的形式,同一個模型也可能包含了不同的抽象結構。.
查看 软计算和数学模型