我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

罗素悖论

指数 罗素悖论

罗素悖论(Russell's paradox),也称为理发师悖论,是英國哲學家罗素於1901年提出的悖论,一个关于类的内涵问题。罗素悖论当时的提出,造成了第三次数学危机。.

目录

  1. 13 关系: 伯特兰·罗素哲學家内涵公理图书理发师悖论类 (数学)维基百科罗素悖论目錄英国集合 (数学)条目悖论

  2. 1901年科學
  3. 伯特兰·罗素
  4. 自指悖论
  5. 集合论悖论

伯特兰·罗素

伯特兰·亚瑟·威廉·罗素,第三代羅素伯爵(Bertrand Arthur William Russell, 3rd Earl Russell,),OM,FRS,英国哲学家、数学家和逻辑学家,致力于哲学的大众化、普及化。 在數學哲學上採取弗雷格的邏輯主義立場,認為數學可以化約到邏輯,哲學可以像邏輯一樣形式系統化,主張逻辑原子論。 1950年,罗素获得诺贝尔文学奖,以表彰其“西歐思想,言論自由最勇敢的君子,卓越的活力,勇氣,智慧與感受性,代表了諾貝爾獎的原意和精神”。 1921年罗素曾於中国讲学,对中国学术界有相当影响。.

查看 罗素悖论和伯特兰·罗素

哲學家

哲學家(Philosopher),哲學的研究者,對哲學懷抱興趣,擁有廣泛的知識,並且能夠利用這些知識來解決特定的哲學問題。根據歐洲哲學傳統,哲學家研究的主題包括美學、倫理學、知識學、邏輯學、形而上學,以至於社會哲學與政治哲學等。.

查看 罗素悖论和哲學家

内涵公理

一个类的所有元素所共同具有的、而且是这个类的元素所独有的性质(也就是说,不是该类的元素就不具有该性质)通俗地称为该类的内涵。类的内涵与外延之间,存在着直观的“反比关系”:“类的内涵越多,其外延越小;内涵越少,其外延越大”。 内涵公理 设P是一个性质,且A是一個藉由性質P確認的集合, 则:\exists A \ \forall x \ (x\in A \leftrightarrow P(x)\wedge Set(x))。 内涵公理的含义是:满足一定性质的所有集合可以组成一个类。 注:最初的内涵公理是这样的:设P是一个性质,则\exists A \ \forall x \ (x\in A \leftrightarrow P(x))。但这样将导致罗素悖论。.

查看 罗素悖论和内涵公理

图书

图书,通常在狭义上的理解是带有文字和图像的纸张的集合。书通常由墨水、纸张、羊皮紙或者其他材料固定在书脊上组成。组成书的一张纸称为一张,一张的一面称为一页。但随着科学技术的发展,狭义图书的概念也在扩展,制作书的材料也在改变,如电子格式的电子书。 从广义理解的图书,则是一切传播訊息的媒介。书也指文学作品或者其中的一部分。在图书馆信息学中,书被称为,以区别于杂志、学术期刊、报纸等连载期刊。所有的书面作品(包括图书)的主体是文学。在小说和一些类型(如传记)中,书可能还要分成卷。对书特别喜爱的人被称为爱书者或藏书家,更随意的称呼是书虫或者书呆子。 买书的地方叫书店,图书馆則是可以借閱書籍的地方。2010年,谷歌公司估计,从印刷术发明至今,大概出版了一亿三千万本不同書名的书籍。.

查看 罗素悖论和图书

理发师悖论

髮師悖論(Barber paradox)是羅素用来比喻羅素悖論的一个通俗说法,是由伯特蘭·羅素在1901年提出的。羅素悖論的出現是由於樸素集合論對於集合的不加限制的定義。由於當時集合論已成為數學理論的基礎,這一悖論的出現直接導致了第三次數學危機,也引發了眾多的數學家對這一問題的補救,最終形成了現在的公理化集合論。同時,羅素悖論的出現促使數學家認識到將數學基礎公理化的必要性。.

查看 罗素悖论和理发师悖论

类 (数学)

在集合論及其數學應用中,類是由集合(或其他數學物件)的搜集(collection),可以依所有成員所共享的性質被無歧定義。有些類是集合(例如由所有偶數構成的類),但有些則不是(如所有序數所構成的類或所有集合所構成的類)。一個不是集合的類被稱之為真類。一个是集合的类被称为“小类”。 在數學裡,有許多物件對集合而言太大,而必須以類來描述,像是大的範疇和超實數的類體之類等。要證明一給定「事物」為一真類,一般的做法是證明此一「事物」至少有著如序數一般多的元素。有關此一證明的例子,請參見。 真類不能是一個集合或者是一個類的元素,而且不受ZF集合論中的公理所限制;因此避免掉了許多樸素集合論中的悖論。反而,這些悖論成了證明某一個類是否為真類的方法之一。例如,羅素悖論可以證明由所有不包含集合自身的集合所構成的類是一個真類,而布拉利-福尔蒂悖论則可證明所有序數所構成的類是一個真類。 標準的ZF集合論公理不會論及到類;而在元語言中,類只作為邏輯公式的等價類而存在。馮諾伊曼-博內斯-哥德爾集合論則採取了另一種方式;類在此一理論中是基礎的物件,而集合則被定義為可以是其他某些類的元素的類。真類,則為不可以是其他任何類的元素的類。 在其他集合論如新基础集合论或半集合的理論中,「真類」的概念依然是有意義的(不是任一堆事物都會是集合),但對集合特質的認定並非依據其大小。例如,所有包含全集的集合論都會有個是集合的子類的真類。 「類」這一詞有時會和「集合」同義,最為人知的是「等價類」這一術語。這種用法是因為從前對類和集合不如現今一樣地區別的緣故。許多19世紀之前對「類」的討論提及的實際上是集合,又或者會是個更為模糊的概念。.

查看 罗素悖论和类 (数学)

维基百科

维基百科(Wikipedia, 或 )是一個网络百科全书项目,特点是自由內容、自由编辑。它目前是全球網絡上最大且最受大眾歡迎的参考工具书.

查看 罗素悖论和维基百科

罗素悖论

罗素悖论(Russell's paradox),也称为理发师悖论,是英國哲學家罗素於1901年提出的悖论,一个关于类的内涵问题。罗素悖论当时的提出,造成了第三次数学危机。.

查看 罗素悖论和罗素悖论

目錄

錄可以指:.

查看 罗素悖论和目錄

英国

大不列颠及北爱尔兰联合王国(United Kingdom of Great Britain and Northern Ireland),简称联合王国(United Kingdom,缩写作 UK)或不列颠(Britain),中文通称英国(中文世界早期亦称英联王国),是本土位於西歐並具有海外領地的主權國家,英國為世界七大國之一,位于欧洲大陆西北面,由大不列颠岛、爱尔兰岛东北部分及一系列较小岛屿共同组成。英国和另一国家唯一的陆上国境线位于北爱尔兰,和爱尔兰共和国相邻。英国由大西洋所环绕,东为北海,南为英吉利海峡,西南偏南为凯尔特海,同爱尔兰隔爱尔兰海相望。该国总面积达,为世界面积第80大的主权国家及欧洲面积第11大的主权国家,人口6510万,为全球第21名及歐洲第3名。 英国为君主立宪国家,采用议会制进行管辖。其首都伦敦为全球城市A++级别和国际金融中心,大都会区人口达1380万,为欧洲第三大和欧盟第一大。现在位英国君主为女王伊丽莎白二世,1952年2月6日即位。英国由四个构成国组成,分别为英格兰、苏格兰、威尔士和北爱尔兰,其中后三者在权力下放体系之下各自拥有一定的权力。三地首府分别为爱丁堡、加的夫和贝尔法斯特。附近的马恩岛、根西行政区及泽西行政区并非联合王国的一部分,而为王冠属地,英国政府负责其国防及外交事务。 英国的构成国之间的关系在历史上经历了一系列的发展。英格兰王国通过1535年和1542年的《联合法令》将威尔士纳入其领土范围。1707年的条约使英格兰和苏格兰王国联合成为大不列颠王国,而1801年后者则进一步同爱尔兰王国联合成为大不列颠及爱尔兰联合王国。1922年,爱尔兰的六分之五脱离联邦,由此便有了今日的大不列颠及北爱尔兰联合王国。大不列颠及北爱尔兰联合王国亦有14块海外领地,为往日帝国的遗留部分。大英帝国在1921年达到其巅峰,拥有全球22%的领土,是有史以来面积最大的帝国。英国在语言、文化和法律体系上对其前殖民地保留了一定的影响力,因而吸引許多以前英聯邦的移民前來居住。 英国为发达国家,以名义GDP为量度为世界第五大经济体,以购买力平价为量度为世界第九大经济体。英国同时还是世界首个工业化国家,在1815年-1914年为世界第一强国,现今仍是強國之一,在全球范围内的经济、文化、军事、科技和政治上有显著影响力。英国为国际公认的有核国家,其军事开支位列全球第五 (IISS)。自1946年以来,英国即为联合国安全理事会常任理事国,而自1973年以来即为欧洲联盟(EU)及其前身欧洲经济共同体(EEC)的成员国,同时还为英联邦、欧洲委员会、七国财长峰会、七国集团、二十国集团、北大西洋公约组织、经济合作与发展组织和世界贸易组织成员国。2016年英國脫離歐盟公投中,英国民众决定脱离欧盟,但因間接影響全球經濟,所以並未得到多數國家支持。.

查看 罗素悖论和英国

集合 (数学)

集合(Set,或簡稱集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合論─樸素集合論─中的定義,集合就是“一堆東西”。)集合裡的事物(“东西”),叫作元素。若然 x 是集合 A 的元素,記作 x ∈ A。 集合是现代数学中一个重要的基本概念,而集合论的基本理论是在十九世纪末被创立的。这里对被数学家们称为“直观的”或“朴素的”集合论进行一个简短而基本的介绍,另外可參见朴素集合论;關於对集合作公理化的理論,可见公理化集合论。.

查看 罗素悖论和集合 (数学)

条目

條目是百科全書所含內容的基礎分割單位(在词典中则称为词条),有一個單一的主題,用於闡述一件事物、一個人物、或他們具備特定主題的組合,並且對該對條目所描述之事物作出一個客觀的介定。 一般而言,百科条目的标题(称为条头)通常为名词或名词性词组。.

查看 罗素悖论和条目

悖论

悖論,亦稱為弔詭或詭局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一詞,来自希腊语παράδοξος ,paradoxos,意思是“未预料到的”,“奇怪的”。 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。 paradox其實亦有“似非而是”的解釋。即是用普通常識看上去不正確,但其實是正確或是有可能的。例如“站著比走路更累”。一般常識是走路比站著累,但要一個人例如在公園裡站一個小時,他可能寧願走動一個小時。因為“站著比走路更累”。也例如狹義相對論裡面的雙生子佯謬亦是另外一個例子。 佛法中也有釋迦牟尼佛破外道悖論的例子:如《大智度論》卷一中舉出長爪梵志的例子:長爪梵志提倡一種“一切法不受”的主張,其意思是說他不接受世間一切理論。釋迦牟尼佛就問他:「你接不接受你自己所建立的這個“一切法不受”的理論?」長爪梵志像一匹千里馬一樣有智慧,不必等到鞭子打到身上才起跑,只看到鞭影覺悟了。換句話說,當釋迦牟尼佛提出這個問題的時候,長爪梵志就知道自己的理論是有問題的──如果接受,那就是“接受一種理論”這與他自己建立的“一切法不受”的主張違背;如果不接受,那他的主張就不存在。就這樣,一方面顯示長爪梵志的理論是一種悖論,另一方面也突顯釋迦牟尼佛以非常簡短的開示就把長爪梵志折服了。.

查看 罗素悖论和悖论

另见

1901年科學

伯特兰·罗素

自指悖论

集合论悖论

亦称为 第三次數學危機。