目录
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
查看 秩 (群)和向量空间
循環群
在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.
查看 秩 (群)和循環群
單群
#重定向 单群.
查看 秩 (群)和單群
群
在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.
查看 秩 (群)和群
群的生成集合
在抽象代數中,群 G 的生成集合是子集 S 使得所有 G 的所有元素都可以表達為 S 的元素和它們的逆元中的有限多個元素的乘積。 更一般的說,如果 S 是群 G 的子集,則 S 所生成的子群 是包含所有 S 的元素的 G 的最小子群,這意味著它是包含 S 元素的所有子群的交集;等價的說, 是可以用 S 的元素和它們的逆元中的有限多個元素的乘積表達的 G 的所有元素的子群。 如果 G.
查看 秩 (群)和群的生成集合
群论
在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.
查看 秩 (群)和群论
P-群
在數學裡,給定一質數p,p-群即是指一個其每個元素都有p的次方階的週期群。亦即,對每個群內的元素g,都存在一個正整數n使得g的pn次方等於其單位元素。 若G是有限的,則其會和G自身的階為p的次方之敘述相等價。關於有限p-群的結構已知道了許多,其中第一個使用類方程的標準結論為一個非當然有限p-群的中心不可能為一個當然子群。一個pn階的p-群會包含著pi階的子群,其中0 ≤ i ≤ n。更一般性地,每一個有限p-群都會是冪零群,且因此都會是可解群。 有相同階的p-群不一定會互相同構;例如,循環群C4和克萊因四元群都是4階的2-群,但兩者並不同構。一個p-群不一定要是阿貝爾群;如8階的二面體群即為一個非可換2-群。(但每個p2階的群都會是可換的。) 以趨進的觀點來看,幾乎所有的有限群都會是p-群。實際上,幾乎所有的有限群都是2-群:2-群的同構類與其階至多為n之群的同構類的比例在當n趨進於無限大時會趨進於1。例如,其階至多為2000的所有不同的群會有99%為1024階的2-群。 每一個非當然有限群都會包括一個為非當然p-群之子群。詳述請見西洛定理。 無限群的例子,見普呂弗群。.
查看 秩 (群)和P-群
有限單群分類
有限單群的分類是代數學裡的一個巨大的工程。有關的文章大多發表於1955年至2004年,本条目英文版。之間,目的在於將所有的有限簡單群都給清楚地分類。這項工程總計約有100位作者在500篇期刊文章中寫下了上萬頁的文字。.
查看 秩 (群)和有限單群分類
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 秩 (群)和数学