我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

向量空间和秩 (群)

快捷方式: 差异相似杰卡德相似系数参考

向量空间和秩 (群)之间的区别

向量空间 vs. 秩 (群)

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。. 在數學的群論中,一個群G的秩rank(G),是G的各個生成集合中最小的勢,也就是 若G是有限生成群,則G的秩是非負整數。 群的秩這個群論概念,類似於向量空間的維數。事實上,如果P是p-群,那麼群P的秩,等於向量空間P/Φ(P)的維數,其中Φ(P)是P的弗拉蒂尼子群。.

之间向量空间和秩 (群)相似

向量空间和秩 (群)有1共同点(的联盟百科): 数学

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

向量空间和数学 · 数学和秩 (群) · 查看更多 »

上面的列表回答下列问题

向量空间和秩 (群)之间的比较

向量空间有36个关系,而秩 (群)有9个。由于它们的共同之处1,杰卡德指数为2.22% = 1 / (36 + 9)。

参考

本文介绍向量空间和秩 (群)之间的关系。要访问该信息提取每篇文章,请访问: