目录
22 关系: 博弈语义,可计算性逻辑,微积分学,直觉主义逻辑,直觉类型论,鲁伊兹·布劳威尔,阿蘭德·海廷,自然数,集合,集合论,逻辑,逻辑非,逻辑或,抽象,柯里-霍华德同构,排中律,有理数,斯蒂芬·科尔·克莱尼,无穷,数学哲学,数学结构主义,思维。
- 數學哲學
- 知識論
博弈语义
博弈语义是一种基于博弈论定义真或有效性等逻辑概念的形式语义,比如游戏者的赢策略。保尔·洛伦茨首先在1950年代晚期为逻辑引入了博弈语义。此后在逻辑中已经研究了很多不同的博弈语义。博弈语义也已经应用于编程语言的形式语义。.
查看 直觉主义和博弈语义
可计算性逻辑
对于是真理的形式理论的经典逻辑,Giorgi Japaridze在2003年发明的可计算性逻辑(Computability logic)是把逻辑恢复为系统的形式的可计算性理论的一个研究程序和数学框架。在这种方法下逻辑公式表示计算问题(或等价的计算资源),而它们的有效性意味着"总是可计算的"。 计算问题和资源的理解是在它们最一般的意义上的 - 交互的意义上的。它们被形式化为机器扮演的针对它的环境的游戏,而可计算性意味着存在着一个机器针对经由环境的任何可能行为赢得了游戏。定义了这种游戏扮演机器所意味的东西,可计算性逻辑在交互层面提供了邱奇-图灵论题的一般化。 真理的经典概念转变为可计算性的特殊的零交互度的情况。这使经典逻辑成为可计算性逻辑的特殊片段。作为前者的保守扩展的同时,可计算性逻辑有着一个数量级之上的表达力、创造性和计算意义。提供了对基本问题"什么是可以(如何)计算的?"的系统的回答,它有潜在的广泛的应用领域。其中包括构造性应用理论,知识库系统,计划和行动系统。 除了经典逻辑之外,线性逻辑(在不严格的意义上理解)和直觉逻辑也转变成可计算性逻辑的自然片段了。因为"直觉真理"和"线性逻辑真理"的有意义的概念可从可计算性逻辑的语义中推导出来。 正在做着语义构造,至今可计算性逻辑仍没有完全开发出证明论。为它的各种片段找到演绎系统并探索它们的性质是正在研究中的领域。.
查看 直觉主义和可计算性逻辑
微积分学
微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.
查看 直觉主义和微积分学
直觉主义逻辑
觉主义逻辑或构造性逻辑是最初由阿蘭德·海廷开发的为鲁伊兹·布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真理性。从实用的观点,也有使用直觉逻辑的强烈动机,因为它有存在性质,这使它还适合其他形式的数学构造主义。.
查看 直觉主义和直觉主义逻辑
直觉类型论
觉类型论、或构造类型论、或Martin-Löf 类型论、或就叫类型论是基于数学构造主义的函数式编程语言、逻辑和集合论。直觉类型论由瑞典数学家和哲学家 Per Martin-Löf 在1972年介入。 Martin-Löf 已经多次修改了它的提议;先是非直谓性的而后是直谓性的,先是外延的而后是内涵的类型论变体。 直觉类型论基于的是命题和类型的同一: 一个命题同一于它的证明的类型。这种同一通常叫做Curry-Howard同构,它最初公式化了命题逻辑和简单类型 lambda 演算。类型论通过介入包含着值的依赖类型把这种同一扩展到谓词逻辑。类型论内在化了 Brouwer、Heyting 和 Kolmogorov 提议的叫做 BHK释义的直觉逻辑释义。类型论的类型扮演了类似于集合在集合论的角色,但是在类型论中的函数总是可计算的。.
查看 直觉主义和直觉类型论
鲁伊兹·布劳威尔
鲁伊兹·艾格博特斯·杨·布劳威尔(Luitzen Egbertus Jan Brouwer,多写作L.)()是一位荷兰数学家和哲学家。他是数学直觉主义流派的创始人,也在拓扑学,集合论,测度论和复分析领域有很多贡献。.
阿蘭德·海廷
阿蘭德·海廷(英语:Arend Heyting,)是荷蘭數學家和邏輯學家。他是魯伊茲·布勞威爾在阿姆斯特丹大學的學生之一,他做了很多工作來使直覺主義邏輯立足於成為數理邏輯一部分。海廷為了整編布勞威爾做數學研究的方法而對直覺主義邏輯做了首次形式開發。把布勞威爾的名字包含在Brouwer–Heyting–Kolmogorov釋義中很大程度上是出於尊敬,因為布勞威爾在原則上反對直覺主義邏輯的任何形式化(並進而把海廷的工作稱為“無果實驗”)。 海廷生於荷蘭阿姆斯特丹,卒於瑞士盧加諾。.
查看 直觉主义和阿蘭德·海廷
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
查看 直觉主义和自然数
集合
集合可以指:.
查看 直觉主义和集合
集合论
集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.
查看 直觉主义和集合论
逻辑
邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.
查看 直觉主义和逻辑
逻辑非
逻辑非是布尔代数中一种一元运算。它的运算结果是将运算元的真值--。 命题A的非可以有几种写法:.
查看 直觉主义和逻辑非
逻辑或
逻辑或(logical or)又称逻辑析取(logical disjunction)、邏輯選言,是逻辑和数学概念中的一个二元逻辑算符。其运算方法是:如果其两个变量中有一个真值为“真”,其结果为“真”,两个变量同时为假,其结果为“假”。.
查看 直觉主义和逻辑或
抽象
抽象在不同領域中的不同意思:.
查看 直觉主义和抽象
柯里-霍华德同构
柯里-霍華德对应是在计算机程序和数学证明之间的紧密联系;这种对应也叫做柯里-霍華德同构、公式为类型对应或命题为类型对应。这是对形式逻辑系统和公式计算(computational calculus)之间符号的相似性的推广。它被认为是由美国数学家哈斯凯尔·加里和逻辑学家William Alvin Howard独立发现的。.
排中律
在逻辑中,排中律(tertium non datur)声称对于任何命题 P,(P ∨ ¬P) 为真。 符号 '¬' 读作“非”,∨ 读作“或”,∧ 读作“与”。 例如,如果 P 是 则包含式析取 为真。 这不完全同于二值原理,它陈述的是 P 必须要么是真要么是假。它也不同于无矛盾律,它陈述的是 ¬(P ∧ ¬P) 是真。排中律只是说 (P ∨ ¬P) 整体是真。不提及 P 自身可以采用什么真值。在任何情况下,任何二值逻辑的语义都将为 P 和 ¬P 指派对立的真值(就是说,如果 P 是真,则 ¬P 是假),所以在二值逻辑中排中律会等价于二值原理。但是,对于非二值逻辑或多值逻辑就不能这么说。 特定的逻辑系统可能通过允许多于两个真值(比如:真、假、中;真、假、非真非假、亦真亦假)而拒绝二值原理,但接受排中律。在这种逻辑中,(P ∨ ¬P) 可以为真,而 P 和 ¬P 不被分别指派为对立的真值。 一些逻辑不接受排中律,最著名的是直觉逻辑。文章《二值和有关规律》中详细地讨论了这个问题。 排中律可能被误用,导致排中律的逻辑谬论,这也叫做假两难推理。.
查看 直觉主义和排中律
有理数
数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.
查看 直觉主义和有理数
斯蒂芬·科尔·克莱尼
斯蒂芬·科尔·克莱尼(Stephen Cole Kleene,)美國數學家、逻辑學家,主要从事對可計算函數的研究,而他的遞歸理論研究有助於奠定理論電腦科學的基礎。他為數學直覺主義的基礎做出了重要貢獻,克莱尼層次結構、克莱尼代数、克莱尼星号(克莱尼閉包)、克莱尼遞歸定理和克莱尼不動點定理數學概念以他的名字命名。他也是正規表示法的發明者。.
无穷
無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.
查看 直觉主义和无穷
数学哲学
数学哲学是哲学的一个分支,研究数学中的哲学问题的学科。从毕达哥拉斯到康德的众多思想家都有许多数学哲学的重要思想,但作为专门学科直到19世纪中叶以后才逐渐建立起来。着重研究:.
查看 直觉主义和数学哲学
数学结构主义
#重定向 数学构成主义.
查看 直觉主义和数学结构主义
思维
#重定向 心灵.
查看 直觉主义和思维