目录
主序星
主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.
查看 白羊座16和主序星
亮星星表
亮星星表,也称为亮星耶鲁星表(Yale Catalogue of Bright Stars)或耶鲁亮星星表(Yale Bright Star Catalogue),是一个列举了视星等超过6.5的恒星的星表。它几乎涵盖了地球上肉眼能看到的所有恒星。现在可以通过数种方法在线查看它的第五版。第一版於1930年出版,由于该星表的前身是由哈佛大学天文台於1908年出版的哈佛恒星测光表修订版(Harvard Revised Photometry)的原因,尽管耶鲁亮星星表的缩写为BS或YBS,但从该星表引用的恒星名都以HR开头。耶鲁亮星星表包含了9110个天体,其中9096个为恒星,9个为新星或超新星,4个为非恒星。这四个非恒星分别为球状星团杜鹃座47(HR 95)、NGC 2808 (HR 3671)、疏散星团NGC 2281 (HR 2496) 和M67 (HR 3515)。 自從1930年第一版問世之後,星表中的天體數量就固定了,1940年第二版、1964年第三版及1982年的第四版都只對內容加以修訂,並增加註解中的資料。1983年出版了增補版,收錄了2603顆亮度高於7.1等的恆星,其中也包括哈佛恒星测光表修订版中原已收錄的500多顆。1991年出版的第5版已改為網路版,可以在網路上查閱。這個版本的註釋就被大量的擴充,其份量已經比星表本身略為多了一些。.
查看 白羊座16和亮星星表
依巴谷卫星
依巴谷卫星(High Precision Parallax Collecting Satellite,缩写为Hipparcos),全称为“依巴谷高精視差測量衛星”,是歐洲太空總署发射的一颗天体测量卫星,用以測量恆星視差和自行,以古希臘天文學家喜帕恰斯的名字命名。 依巴谷卫星於1989年8月8日由亞利安4號火箭運載升空。它本應於地球同步軌道上運作,但因助推火箭失效,衛星只到達近地點507千米、遠地點35,888千米的狹長橢圓軌道。儘管如此,它仍能完成85%的原任務目標。與該衛星的通訊於1993年8月15日中止。 整個計劃分「依巴谷實驗」和「第谷實驗」兩部分。前者目標是測量120,000顆恆星的五個天文測量參數,精度達2至4毫角秒;後者目標是測量另外400,000顆恆星的天文測量參數及B-V色指數,但位置精度稍遜(20─30毫角秒)。 1996年8月,依巴谷星表和第谷星表正式完成,並於1997年6月由歐洲太空總署出版。這兩個星表的資料用來編製千禧年星圖,包含全天百萬餘顆暗至11等的恆星,以及一萬餘個非恆星天體。 曾有人指出依巴谷卫星的測量數據中,至少在某些天區有大約1毫角秒的系統誤差。利用依巴谷卫星數據所推算的昴星團距離,比採用其他量天方法得出的距離要短10%。直至2004年,這爭論還未有結果。.
查看 白羊座16和依巴谷卫星
依巴谷星表
依巴谷星表和第谷星表(Tycho-1)是歐洲太空總署的依巴谷衛星成果的主要產物。這顆衛星在1989年11月至1993的3月的四年任務中,傳回了許多高精度的科學數據。 依巴谷星表至少列出了118,000顆天體測量學上精確度在千分之一弧秒恆星,而第谷星表 列出的則略微超過1,050,000顆恆星。 這份星表包含很大數量的高精密度天體位置和測光數據。另外伴生的附錄是變星、雙星和聚星的特性數據,和太陽系的天文測量和測光數據。主要的部分提供了可以印製和以機器閱讀的版本。 全球性的數據分析,需要處理1,000兆比特未經加工的衛星原始數據,這是一件複雜且需要漫長時間的工作,由NDAC和先進科學和技術基金會承擔,共同製做出依巴谷目錄。第四個參與合作的科學機構是INCA,負責撰寫依巴谷衛星的觀測程式和編譯成最佳化的數據選擇,在發射前就先安置在衛星的輸出目錄中。依巴谷和第谷星表的成果使歐洲太空總署等四個團體的繁雜工作得到形式上的正式結束。.
查看 白羊座16和依巴谷星表
光年
光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.
查看 白羊座16和光年
紅外線天文衛星
紅外線天文衛星(Infrared Astronomical Satellite,IRAS)是在太空中的天文台,以紅外線巡天,執行勘查整個天空的任務。.
白羊座
白羊座(Aries,天文符号:♈)是黄道十二星座之一,位于双鱼座和金牛座之间。面积441.39平方度,占全天面积的1.07%,在全天88个星座中,面积排行第三十九。白羊座亮于5.5等的恒星有28颗,其中2等星1颗,3等星1颗。每年10月30日子夜白羊座的中心经过上中天。白羊座虽然不引人注目,但在古希腊很著名,因为古代春分点就位于白羊座。现在由于岁差的关系,春分点已经移到双鱼座。 白羊座在日本称为牡羊座,即「おひつじ座」,受其影响,在大中华地区也有用牡羊座这个占星學的名称。.
查看 白羊座16和白羊座
视星等
视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.
查看 白羊座16和视星等
HD星表
HD星表(The Henry Draper Catalogue,缩写为HD,亨利·德雷伯星表)是哈佛大学天文台编纂的世界上第一个收录恒星光谱的大型星表,首版在1918年至1924年间出版,它给出了225,300颗恒星的光谱分类,涵盖了全天最暗达到照相星等为9等的恒星(大部分是北天的恒星),历元为1900.0。最初的HD星表包含的星主要是亮于9等的星,随后的增版增加了在某些天区的暗星。, HyperSky documentation, Willmann-Bell, Inc., 1996.
查看 白羊座16和HD星表
J2000.0
J2000.0是在天文学上使用的曆元,前缀「J」代表这是一个儒略纪元法,而不是一个贝塞耳纪元。 它指的是儒略日期TT时2451545.0,或是TT时2000年1月1日12時,即相对于TAI的2000年1月1日,11:59:27.816或UTC时间2000年1月1日11:58:55.816。 因恒星赤经和赤纬会因岁差(與恒星的自行)改变,所以天文学家们经常指定某一特定的纪元作参考点。早期採用的纪元标准是B1950.0纪元。 在J2000时刻的天赤道與二分点用来定义天球参考坐标系,该参考坐标系也可写作J2000坐标或简单记为J2000,但更合适的,应该如下使用国际天球参考系統(ICRS)。.
SAO星表
SAO星表(The Smithsonian Astrophysical Observatory Star Catalog / 史密松天体物理台星表)是一个天体测量星表,在1966年由史密松天体物理台出版,共包含258,997颗恒星。该星表由之前的一些星表编纂而成,但仅收录9.0等以上且已经精确测量过自行的恒星。SAO星表里的星名由字母SAO开头接着数字序号表示,恒星以赤纬分区,每10度为一区,共分为18区,在每一区中的恒星依照赤经位置来排序。SAO星表较大的变动是增加了一些HD星表没有的资料:恒星的自行,因为这是很有用的资料;与HD星表和巡天星表序号的交互参照,在最后的一版中仍然被保留着。.
查看 白羊座16和SAO星表
恒星光谱
在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.
查看 白羊座16和恒星光谱
波恩星表
波恩星表(Durchmusterung或Bonner Durchmusterung),又名波恩星图,是德国天文学家阿格兰德于1859年到1862年在波恩天文台出版的一套四卷本的星表,缩写为BD,包含了324,189颗恒星,采用1850.0历元,赤纬范围从+90°到-2°,极限星等为9-10等,是在照相术发明以前编纂的最完整的一份星表。1863年根据波恩星表发表了波恩巡天星图。 由于波恩天文台位于北半球,无法完整观测到南半球的天空,1892年阿根廷的科尔多瓦天文台发表了科尔多瓦巡天星表(Cordoba Durchmusterung),简称CD,使用目视方法,将波恩星表扩展至赤纬-23°,共收录了58万多颗恒星。1896年在南非好望角完成的好望角照相星表(简称CPD)扩展至南天极,共有45万多颗恒星。 波恩星表收录了恒星的光谱资料。在亨利·德雷伯星表中找不到的恒星,天文学家会优先使用波恩星表中的编号。 Category:星表.
查看 白羊座16和波恩星表
2微米全天巡天
2微米全天巡天(Two Micron All-Sky Survey)(2MASS)的工作開始於1997年,完成於2001年。使用的兩架望遠鏡,分別位於北半球美國亞利桑那州的霍普金斯山和南半球智利托洛洛山美洲际天文台,以確保能觀測到全部的天空。這是迄今最雄心勃勃的巡天計畫,經過整理的最後數據已經在2003年公佈。全部的天空都使用紅外線的2微米鄰近的3個波段:J (1.25μm), H(1.65μm),和Ks(2.17μm)完成掃描的工作。 這次巡天的目的包括:.