徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

𨦡鹽

指数 𨦡鹽

也称为“氧鎓盐”,是指所有含三价氧的化合物,对应的正离子称为“𨦡正离子”。最简单的𨦡离子是水合氢离子(H3O+)。其他常见的𨦡盐还有有机化学中羰基、醚和醇的质子化或烷基化产物,即R-C.

19 关系: 三氟化硼乙基共振 (化学)球棒模型离子空間填充模型羰基烷基化烷化劑烃基质子化键线式離去基團水合氢离子水分子有机化学

三氟化硼

三氟化硼是化学式为BF3的无机化合物,室温下为无色气体,在潮湿空气中发烟。它是很常用的路易斯酸,也常用于制取其它硼化合物。.

新!!: 𨦡鹽和三氟化硼 · 查看更多 »

乙基

乙基是一个烃基官能团,化学式为—C2H5,简写为—Et(Ethyl)。最简单的乙基化合物为乙烷(C2H6),乙基与氢原子相连。其他包括氯乙烷、溴乙烷、乙醇、乙胺和硝基乙烷等。 乙基化指向分子中引入乙基官能团的过程,参见烷基化。.

新!!: 𨦡鹽和乙基 · 查看更多 »

共振 (化学)

共振论是化学中表示分子结构的一种方法,是价键理论的重要组成部分。该方法认为,对于结构无法用一个经典结构式来表达的分子、离子或自由基,可以通过若干经典结构式的共振来表达其结构。共振中的结构并不存在,真实粒子也并非这些共振结构的混合物或是平衡体系,只是价键理论中无法用单一结构式来准确表达物质结构,必须要借助共振的思想。.

新!!: 𨦡鹽和共振 (化学) · 查看更多 »

球棒模型

脯氨酸的塑料球棒模型. 球棒模型(英語:Ball-and-stick models)是一種空間填充模型(space-filling model),用來表現化學分子的三維空間分佈。在此作圖方式中,線代表共價鍵,可連結以球型表示的原子中心。 最早的球棒分子模型是由德國化學家奧古斯特·威廉·馮·霍夫曼(August Wilhelm von Hofmann)所作,目的是用來講課。.

新!!: 𨦡鹽和球棒模型 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 𨦡鹽和离子 · 查看更多 »

空間填充模型

間填充模型(英語:Space-filling models)也稱為calotte模型或CPK模型,CPK三個字母是來自Corey、Pauling(萊納斯·鮑林)與Koltun。是一種與球棒模型類似,用來表現分子三維空間分佈的分子模型。是球棒模型的進一步發展,可顯示更為真實的分子外型。.

新!!: 𨦡鹽和空間填充模型 · 查看更多 »

羰基

基(carbonyl group)在有机化学中,是一个形如 C.

新!!: 𨦡鹽和羰基 · 查看更多 »

烷基化

烷基化是烷基由一个分子转移到另一个分子的过程。近現代產業中,在整个炼油过程中,烷基化可以将分子按照需要重组,增加产量,對油品應用是非常重要的一环。.

新!!: 𨦡鹽和烷基化 · 查看更多 »

烷化劑

烷化劑(Alkylating agents,或烷基化劑)是一種有機化合物,能使烷基轉移到其他分子上,此過程稱為烷基化。 烷化劑具有生物活性,因此可用來當作化學武器,如芥子氣。一般也應用於煉油、塑膠或製藥工業上。.

新!!: 𨦡鹽和烷化劑 · 查看更多 »

烃基

基在化学中被用来指只含碳、氢两种原子的官能团,可以看作是相应的烃失去一个或多个氢原子(H)后剩下的自由基。.

新!!: 𨦡鹽和烃基 · 查看更多 »

质子化

在化学中,质子化是原子、分子或离子获得质子(H+)的过程。  简单的可以理解为和质子化合, 即结合一个质子,一般都是该物质有孤对电子,所以可以通过配位键结合一个质子。如H2O变成H3O+,NH3变成NH4+等等。 质子化的逆过程是去质子化。 质子化可能是最基本的化学反应,是很多化学计量和催化过程中的一步。一些多元离子和原子可以进行多次质子化,例如很多生物高分子。 基底经过质子化後,其中每一种粒子的质量和电荷都增加了一个单位。分子质子化或去质子化後,很多化学性质都发生了改变,不仅限於电荷和质量,如亲水性、还原势、光学特性等。在特定的分析步骤中,如电喷雾质谱,质子化是必需的一步。 质子化和去质子化会发生在大多数酸碱反应,是大多数酸碱反应理论的核心。布朗斯特-劳里酸被定义为将另一物质质子化的化学物质。.

新!!: 𨦡鹽和质子化 · 查看更多 »

键线式

键线式(),也称骨架式、拓扑式、折线简式,是在纸面表示分子结构的最常用的方法,在表示有机化合物的立体结构时尤其常用。用键线式表示的结构简明易懂,并且容易书写。.

新!!: 𨦡鹽和键线式 · 查看更多 »

醚(漢語拼音:mí,Ether)是具有醚官能团的一类有机化合物。醚官能团是由一个氧原子连接两个烷基或芳基所形成,醚的通式为:R–O–R。它还可看作是醇或酚羟基上的氢被烃基所取代的化合物。 醚类中最典型的化合物属:乙醚,它常用于有机溶剂与医用麻醉剂。由于其在化学中的常用性(乙醚是最常用的醚类提取溶剂),我们还有时将乙醚直接简称为“醚”。醚类化合物的应用常见于有机化学和生物化学,它们还可作为糖类和木质素的连接片段。.

新!!: 𨦡鹽和醚 · 查看更多 »

醇是有機化合物的一大類,是脂肪烴、脂環烴或芳香烴側鏈中的氫原子被羥基取代而成的化合物。在化學中,醇是任何有機化合物,其中羥基官能團(-OH)被綁定到一個飽和碳原子。通常意义上泛指的醇,是指羟基与一个脂肪族烃基相连而成的化合物;羥基與苯環相連,則由于化学性质与普通的醇有所不同而分类为酚;羥基與sp2雜化的双键碳原子相連,属烯醇类,该类化合物由于会互变异构为醛(只有乙烯醇能變乙醛)或酮,因此大多无法稳定存在。.

新!!: 𨦡鹽和醇 · 查看更多 »

離去基團

離去基團(或稱離去基)在化學反應中從一較大分子中脫離的原子或官能基。如下式中,Cl−就是離去基團: 當離去基團共軛酸的pKa越小,離去基團越容易從其他分子中脫離。原因是因為當其共軛酸的pKa越小,相应離去基團不需和其他原子結合,以陰離子(或電中性離去基團)的形式存在的趋势也就增强。因而强碱往往不是很好的离去基团。 溴化物作为离去基团和氢氧化物(取其OH - 的功能)作为亲核试剂。 对于SN1反应而言,以卤离子、拟卤离子和非配位阴离子作为离去基团较好,尤其是卤离子。可以加入银离子以生成难溶的卤化银,进一步向右拉动反应平衡。 若一個離去基團越容易從其他分子脫離,會稱之好的離去基團。以下是在室溫的水中比較離去基團容易從其他分子脫離的程度:.

新!!: 𨦡鹽和離去基團 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 𨦡鹽和氧 · 查看更多 »

水合氢离子

水合氢离子也稱離子或(),指的是氢离子與水分子配位结合而生成的正離子。與水結合之氫正離子,通常的來源為可溶於水的酸,可溶於水的酸溶在水中會解離成為酸根離子與氫離子,由於水分子能提供孤對電子,所以氫離子便與水分子配位结合而生成水合氢离子。 水合氢离子通常用H3O+表示,为了简便,也常把H3O+写作H+。 命名时若作为前缀则称为𨦡基(oxonio-)。 2015年11月2日,使用水合氫離子來探測質子-電子質量比μ,布拉格查理大學物理研究團隊發現,在過去70億年內,Δμ/μ不大於10-7。.

新!!: 𨦡鹽和水合氢离子 · 查看更多 »

水分子

#重定向 水的性質.

新!!: 𨦡鹽和水分子 · 查看更多 »

有机化学

有机化学是研究有机化合物及有機物質的结构、性质、反應的学科,是化学中极重要的一个分支。有机化学研究的對象是以不同形式包含碳原子的物質 ,又称为碳化合物的化学。 有關有机化合物或有機物質結構的研究包括用光譜、核磁共振、红外光谱、紫外光谱、质谱或其他物理或化學方式來確認其組成的元素、組成方式、實驗式及化學式。有關性質的研究包括其物理性質及化學性質,也需評估其,目的是要了解有機物質在其純物質形式(若是可能的話),以及在溶液中或是混合物中的性質。有機反應的研究包括有機物質的製備(可能是有機合成或是其他方式),以及其化學反應,可能是在實驗室中的,或是In silico(經由電腦模擬的)。 有机化学研究的範圍包括碳氫化合物,也就是只由碳和氫組成的化合物,化合物中也有可能还会参与其他的元素,包括氢、 氮、氧和卤素,还有诸如磷、硅、硫等元素。 。有机化学和許多相關領域有重疊,包括药物化学、生物化学、有机金属化学、高分子化学以及材料科学等。 有机化合物之所以引起研究者浓厚的兴趣,是因为碳原子可以形成稳定的长碳链或碳环以及许许多多种的官能基,这种性质造就有机化合物的多样性。有機化合物是所有碳基生物的基礎。有機化合物的應用範圍很廣,包括醫學、塑膠、藥物、、食物、化妆品、护理用品、炸藥及塗料等。.

新!!: 𨦡鹽和有机化学 · 查看更多 »

重定向到这里:

氧鎓氧鎓离子𨦡盐

传出传入
嘿!我们在Facebook上吧! »