我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

氟氧化鉲

指数 氟氧化鉲

氟氧化鉲,是一種具有放射性的無機化合物,單一分子由一個鉲和氧離子與氟離子組成,其化學式為CfOF,在1960年代時被制取。它的晶體結構為二氧化鉲的立方晶系的螢石結構,晶格參數為556.1 ± 0.4 pm.

目录

  1. 8 关系: 化学式立方晶系萤石无机化合物放射性

化学式

化學式(chemische Formel/chemical formula),是一種用來表示化學物質(也可能為元素或化合物)組成的式子。 一般情況下,由元素符號、數字或其他符號組成;這些符號單一行列,被限制在一個排版,並會出現上標和下標。 下為常用符號:.

查看 氟氧化鉲和化学式

立方晶系

立方晶系,也叫等轴晶系,它有4个三重对称轴以及3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴。其中的3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴是晶体结晶轴。轴角α.

查看 氟氧化鉲和立方晶系

萤石

螢石(Fluorite),又称氟石,是一种矿物,其主要成分是氟化钙(CaF2),含杂质较多。其中的鈣常被釔和鈰等稀土元素替代,此外还含有少量的Fe2O3、SiO2和微量的Cl、O3和He等。自然界中的萤石常显鲜艳的颜色,硬度比小刀低。螢石可以用于制备氟化氢:CaF2 + H2SO4 → CaSO4+ 2HF;它的折射率和色散极低,对红外线、紫外线的透过性能高,适合做光学元件。但天然萤石晶体往往不纯,混有杂质,而且体积不足以制造大型光学元件,所以人工结晶萤石成为了製造鏡頭所用低色散光學元件的材料之一。.

查看 氟氧化鉲和萤石

锎(Californium,--)是一種放射性金屬元素,符號為Cf,原子序為98。鉲屬於錒系元素,是第六種人工合成的超鈾元素。鉲是產量能以肉眼可見的元素中原子量第二高的(最高的是鑀),也是自然界能自行產生的元素中質量数最高的,所有比鉲更重的元素皆必須通過人工合成才能產生。伯克利加州大學於1950年以α粒子(氦-4離子)撞擊鋦,首次人工合成鉲元素,因此該元素是以美國加利福尼亞州及加州大學命名的。 鉲擁有三種晶體結構,分別存在於正常氣壓900 °C以下、正常氣壓900 °C以上與高壓下(48 GPa)。在室溫下,鉲金屬塊會在空氣中緩慢地失去光澤。鉲的化合物主要由能夠形成3個化學鍵的鉲(III)形成。目前已知的20個鉲的同位素中,鉲-251是最為穩定的,其半衰期為898年,而鉲-252是最常被使用的同位素,半衰期約為2.64年,該同位素主要在美國的橡樹嶺國家實驗室及俄羅斯的合成。由於大部分鉲同位素的半衰期都很短,所以地殼中不存在大量的鉲元素。地球大約在45億年前形成,而在地球中自然放射的中子不足以從較穩定的元素產生出大量的鉲。 鉲是少數具有實際用途的超鈾元素之一,利用某些鉲同位素是強中子射源的特性,鉲能夠用於啟動核反應爐,還可以使用在中子衍射技術和中對材料進行研究。另外,鉲可用来合成质量数更高的元素,例如以鈣-48離子撞擊鉲-249可合成第118號元素Og。但在處理鉲的時候,也因此必須考慮到放射性的問題。當鉲累積在動物的骨骼組織時,將破壞紅血球的形成,影响造血功能。.

查看 氟氧化鉲和锎

氟是一种化学元素,符号为F,其原子序数为9,是最轻的卤素。其单质在标准状况下为浅黄色的双原子气体,有剧毒。作为电负性最强的元素,氟极度活泼,几乎与所有其它元素,包括某些惰性气体元素,都可以形成化合物。 在所有元素中,氟在宇宙中的丰度排名为24,在地壳中丰度排名13。萤石是氟的主要矿物来源,1529年该矿物的性质首次被描述。由于在冶炼中将萤石加入金属矿石可以降低矿石的熔点,萤石和氟包含有拉丁语中表示流动的词根fluo。尽管在1810年就已经认为存在氟这种元素,由于氟非常难以从其化合物中分离出来,并且分离过程也非常危险,直到1886年,法国化学家亨利·莫瓦桑才采用低温电解的方法分离出氟单质。许多早期的实验者都因为他们分离氟单质的尝试受到伤害甚至去世。莫瓦桑的分离方法在现代生产中仍在使用。自第二次世界大战的曼哈顿工程以来,单质氟的最大应用就是合成铀浓缩所需的六氟化铀。 由于提纯氟单质的费用甚高,大多数的氟的商业应用都是使用其化合物,开采出的萤石中几乎一半都用于炼钢。其余的萤石转化为具有腐蚀性的氟化氢并用于合成有机氟化物,或者转化为在铝冶炼中起到关键作用的冰晶石。有机氟化物具有很高的化学稳定性,其主要用途是制冷剂、绝缘材料以及厨具(特氟龙)。诸如阿托伐他汀和氟西汀等药物也含有氟。由于氟离子能够抑制龋齿,氟化水和牙膏中也含有氟。全球与氟相关的化工业年销售额超过150亿美元。 气体是温室气体,其温室效应是二氧化碳的100到20000倍。由于碳氟键强度极高,有机氟化合物在环境中难以降解,能够长期存在。在哺乳动物中,氟没有已知的代谢作用,而一些植物能够合成能够阻止食草动物的有机氟毒素。.

查看 氟氧化鉲和氟

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

查看 氟氧化鉲和氧

无机化合物

无机化合物即无机物,一般指不含碳元素的化合物,如水、食鹽、硫酸等。但一些簡單的含有碳元素化合物如一氧化碳、二氧化碳、碳酸、碳酸鹽、氰化物和碳化物等,由於它們的組成和性質與其他无机化合物相似,因此也作為无机化合物來研究。絕大多數的无机化合物可以歸入氧化物、酸、鹼、鹽四大類。.

查看 氟氧化鉲和无机化合物

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

查看 氟氧化鉲和放射性

亦称为 CfFO,CfOF。