我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

欧拉定理 (几何学)

指数 欧拉定理 (几何学)

在平面几何学中的欧拉定理是说,三角形的外心与内心之间的距离d 可表示为 其中R为外接圆半径,r为内切圆半径。 从欧拉定理可推出欧拉不等式 (當三角形等邊時,等號成立):.

目录

  1. 6 关系: 半径外接圓三角形内切圆几何学距离

半径

在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.

查看 欧拉定理 (几何学)和半径

外接圓

在數學中,一個二維平面上的多邊形的外接圓是一個使得該多邊形的所有頂點都在其上的圓形,這時稱這個多邊形為圓內接多邊形,外接圓的圓心被稱為該多邊形的外心。 一個多邊形至多有一個外接圓,也就是說對於一個多邊形,它的外接圓,如果存在的話,是唯一的。並非所有的多邊形都有外接圓。三角形和正多邊形一定有外接圓。擁有外接圓的四邊形被稱為圓內接四邊形。.

查看 欧拉定理 (几何学)和外接圓

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

查看 欧拉定理 (几何学)和三角形

内切圆

在數學中,若一個二維平面上的多邊形的每條邊都能與其內部的一個圓形相切,該圓就是多邊形的內切圓,這時稱這個多邊形為圓外切多邊形。它亦是多邊形內部最大的圓形。内切圓的圓心被稱為該多邊形的内心。 一個多邊形至多有一個内切圓,也就是說對於一個多邊形,它的内切圓,如果存在的話,是唯一的。並非所有的多邊形都有内切圓。三角形和正多邊形一定有内切圓。擁有内切圓的四邊形被稱為圆外切四边形。.

查看 欧拉定理 (几何学)和内切圆

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 欧拉定理 (几何学)和几何学

距离

距離是對兩個物體或位置間相距多遠的數值描述,是個不具方向性的純量,且不為負值。 在物理或日常使用中,距離可以是個物理長度,或某個估算值,指人、動物、交通工具或光線之類的媒介由起點至終點所經過的路徑長。 在數學裡,距離是個稱之為度量的函數,為物理距離這個概念之推廣。度量是個函數,依據一組特定的規則作用,且有具體的方法可用來描述一些空間內的元素互相「接近」或「遠離」。除了歐氏空間內常見的距離定義外,在圖論與統計學等數學領域裡,亦存在其他的「距離」概念。在大多數的情形下,「從 A 至 B 的距離」與「從 B 至 A 的距離」的意義是相同的。.

查看 欧拉定理 (几何学)和距离